Section 5.5. Alternating Series.

Examples.

1. $\sum_{n=1}^{\infty}\left(-\frac{1}{2}\right)^{n}=-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\ldots$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$.

Exercises. Determine whether each of the following series converges absolutely, converges conditionally, or diverges.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n+1}$
2. $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n+3}$

Section 5.6. Ratio and Root Tests.

Examples.

1. The series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges by the ratio test since

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0 .
$$

2. The series $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$ converges by the root test since

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Exercises. Can the ratio and/or root test be used to determine convergence/divergence of the following series?

1. $\sum_{n=1}^{\infty} \frac{n!}{3 n+1}$

Solution. The ratio test can be used. The limit is infinite, so the series diverges.
2. $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}+n^{2}+1}$

Solution. If the ratio test is used, the limit is 1 , so the test is inconclusive. The limit does not seem to be simple enough for the root test. (Note: the limit comparison test can be used with $\sum_{n=1}^{\infty} \frac{1}{n}$ to establish that this series diverges.)
3. $\sum_{n=1}^{\infty} \frac{3^{n}}{(n+1)^{n}}$

Solution. The root test can be used. The limit is 0 , so the series converges.

Section 6.1. Power Series and Functions.

Examples. For 1-3, ind the radius and interval of convergence for each series.

1. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
2. $\sum_{n=0}^{\infty} n!x^{n}$
3. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{(n+1) 3^{n}}$
4. Use a power series to represent $\frac{1}{1+x^{3}}$ and find its interval of convergence.

Exercises. (Note: we did not actually have time in class to do these.)

1. Find the radius and interval of convergence for the series $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$.

Solution. Using the ratio test, we have $\rho=\lim _{n \rightarrow \infty} \frac{x^{n+1} \sqrt{n+1}}{x^{n} \sqrt{n}}=x$. The series converges when $|x|<1$ and diverges when $|x|>1$, so the radius of convergence is 1 . If $x=1$, the series is $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, and it diverges by the p-series test (as $p<1$). If $x=-1$, the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$, and it converges by the alternating series test. Thus the interval of convergence is $[-1,1)$.
2. Use a power series to represent $\frac{x^{2}}{4-x^{2}}$ and find its interval of convergence. Solution. See example 6.3 (b) in the book.

Section 6.3. Taylor and Maclaurin Series.

Examples.

1. Find the Taylor series of $f(x)=\ln x$ at $a=1$. Graph the first seven Taylor polynomials.
Solution. $f(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5}-\frac{(x-1)^{6}}{6}+\ldots$

$$
p_{0}(x)=0,
$$

$$
p_{1}(x)=x-1
$$

$$
p_{2}(x)=(x-1)-\frac{(x-1)^{2}}{2},
$$

$$
p_{3}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}
$$

$$
p_{4}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4},
$$

$$
p_{5}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5},
$$

$$
p_{6}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5}-\frac{(x-1)^{6}}{6} .
$$

2. Find the Maclaurin series of $f(x)=e^{x}$.

Solution. $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Exercises. (Note: we did not actually have time in class to do these.)
Find and graph the first four Maclaurin polynomials of

1. $f(x)=\sin x$.
2. $f(x)=\cos x$.

Solutions. See example 6.12 in the book.

Section 6.4. Working with Taylor and Series.

Examples.

1. Binomial series: $(1+x)^{r}=\sum_{n=0}^{\infty}\binom{r}{n} x^{n}=1+r x+\frac{r(r-1)}{2!} x^{2}+$

$$
\frac{r(r-1)(r-2)}{3!} x^{3}+\cdots+\frac{r(r-1) \ldots(r-n+1)}{n!} x^{n}+\ldots \text { for }|x|<1
$$

2. Maclaurin polynomial for $\ln (1+x): \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$.

Exercises.

1. Write the third Maclaurin polynomial for $\sqrt{1+x}$.

Solution. See example 6.17 in the book.
2. Find the Maclaurin series for $\sin \left(x^{2}\right)$.

Solution. Since the Maclaurin series for $\sin (x)$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$, the
Maclaurin series for $\sin \left(x^{2}\right)$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!}$.
3. Use $\left(\tan ^{-1} x\right)^{\prime}=\frac{1}{1+x^{2}}$ to find the Maclaurin series for $\tan ^{-1} x$.

Solution. Integrating $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$,
we have $\tan ^{-1} x=c_{0}+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$. Since $\arctan (0)=0$, we have $\tan ^{-1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$.

