Section 5.5. Alternating Series.

Examples.

1.
$$\sum_{n=1}^{\infty} \left(-\frac{1}{2}\right)^n = -\frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \dots$$

2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

Exercises. Determine whether each of the following series converges absolutely, converges conditionally, or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}$$

2.
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+3}$$

Section 5.6. Ratio and Root Tests.

Examples.

1. The series
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
 converges by the ratio test since
 $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \lim_{n \to \infty} \frac{2}{n+1} = 0.$
2. The series $\sum_{n=1}^{\infty} \frac{1}{n^n}$ converges by the root test since
 $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n \to \infty} \frac{1}{n} = 0.$

Exercises. Can the ratio and/or root test be used to determine convergence/divergence of the following series?

$$1. \sum_{n=1}^{\infty} \frac{n!}{3n+1}$$

Solution. The ratio test can be used. The limit is infinite, so the series diverges.

2.
$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + n^2 + 1}$$

Solution. If the ratio test is used, the limit is 1, so the test is inconclusive. The limit does not seem to be simple enough for the root test. (Note: the limit comparison test can be used with $\sum_{n=1}^{\infty} \frac{1}{n}$ to establish that this series diverges.)

$$3. \sum_{n=1}^{\infty} \frac{3^n}{(n+1)^n}$$

Solution. The root test can be used. The limit is 0, so the series converges.

Section 6.1. Power Series and Functions.

Examples. For 1-3, ind the radius and interval of convergence for each series.

1.
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

2.
$$\sum_{n=0}^{\infty} n! x^n$$

3.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{(n+1)3^n}$$

4. Use a power series to represent $\frac{1}{1+x^3}$ and find its interval of convergence.

Exercises. (Note: we did not actually have time in class to do these.)

- 1. Find the radius and interval of convergence for the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$. Solution. Using the ratio test, we have $\rho = \lim_{n \to \infty} \frac{x^{n+1}\sqrt{n+1}}{x^n\sqrt{n}} = x$. The series converges when |x| < 1 and diverges when |x| > 1, so the radius of convergence is 1. If x = 1, the series is $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, and it diverges by the p-series test (as p < 1). If x = -1, the series is $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$, and it convergence is [-1, 1).
- 2. Use a power series to represent $\frac{x^2}{4-x^2}$ and find its interval of convergence. Solution. See example 6.3 (b) in the book.

Section 6.3. Taylor and Maclaurin Series.

Examples.

1. Find the Taylor series of $f(x) = \ln x$ at a = 1. Graph the first seven Taylor polynomials.

Solution. $f(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \frac{(x-1)^6}{6} + \dots$ $p_0(x) = 0,$ $p_1(x) = x - 1,$ $p_2(x) = (x-1) - \frac{(x-1)^2}{2},$ $p_3(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3},$ $p_4(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4},$ $p_5(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5},$ $p_6(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \frac{(x-1)^5}{5} - \frac{(x-1)^6}{6}.$

2. Find the Maclaurin series of $f(x) = e^x$. Solution. $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Exercises. (Note: we did not actually have time in class to do these.) Find and graph the first four Maclaurin polynomials of

- 1. $f(x) = \sin x$.
- 2. $f(x) = \cos x$.

Solutions. See example 6.12 in the book.

Section 6.4. Working with Taylor and Series.

Examples.

1. Binomial series:
$$(1+x)^r = \sum_{n=0}^{\infty} {\binom{r}{n}} x^n = 1 + rx + \frac{r(r-1)}{2!} x^2 + \frac{r(r-1)(r-2)}{3!} x^3 + \dots + \frac{r(r-1)\dots(r-n+1)}{n!} x^n + \dots \text{ for } |x| < 1$$

2. Maclaurin polynomial for $\ln(1+x)$: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$.

Exercises.

- 1. Write the third Maclaurin polynomial for $\sqrt{1+x}$. Solution. See example 6.17 in the book.
- 2. Find the Maclaurin series for $\sin(x^2)$. Solution. Since the Maclaurin series for $\sin(x)$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$, the Maclaurin series for $\sin(x^2)$ is $\sum_{n=0}^{\infty} (-1)^n \frac{(x^2)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)!}$.
- 3. Use $(\tan^{-1} x)' = \frac{1}{1+x^2}$ to find the Maclaurin series for $\tan^{-1} x$.

Solution. Integrating
$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$
,
we have $\tan^{-1} x = c_0 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$. Since $\arctan(0) = 0$, we have $\tan^{-1}(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$.