MATH 75B

Test 1

February 25, 2019

Name:

- No books, notes, or calculators are allowed.
- Please show all your work for problems 7-10.
- Please simplify your answers whenever possible.

Multiple choice questions: circle the correct answer

1. Evaluate $\sin ^{-1}\left(-\frac{1}{2}\right)$.
A. $\frac{\pi}{2}$
B. $-\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $-\frac{\pi}{6}$
E. none of the above
2. Let $f(x)=4 \tan ^{-1}(x)$. Find $f^{\prime}(1)$.
A. 1
B. 2
C. 4
D. 8
E. none of the above
3. The radius of a circle is increasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$. How fast is its area increasing when the radius is 3 cm ?
A. $4 \pi \mathrm{~cm}^{2} / \mathrm{s}$
B. $6 \mathrm{~cm}^{2} / \mathrm{s}$
C. $12 \pi \mathrm{~cm}^{2} / \mathrm{s}$
D. $24 \mathrm{~cm}^{2} / \mathrm{s}$
E. none of the above
4. Find all critical points of $g(x)=x \ln x$.
A. $\frac{1}{e}$ only
B. $\frac{1}{e}$ and e
C. e only
D. -1 only
E. none of the above
5. Find the absolute maximum value of $y=x^{3}-12 x$ on $[-3,3]$.
A. -2
B. 0
C. 9
D. 16
E. none of the above
6. How many inflection points does $y=\frac{1}{x}$ have?
A. 0
B. 1
C. 2
D. infinitely many
E. none of the above

Regular problems: show all your work

7. Consider the curve given by $3 x^{2} y-4 \sqrt{x}+y^{3}=41$.
(a) Use implicit differentiation to find $y^{\prime}(x)$.
(b) Verify that the point $(4,1)$ lies on the above curve.
(c) Find the slope of the tangent line to the above curve at the point $(4,1)$.
8. A 10 -ft-long ladder rests against a vertical wall. Misha starts pulling the bottom of the ladder away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$. How fast is the top of the ladder sliding down the wall at the moment when its bottom is 6 ft from the wall?
9. Find an equation of the tanget line to $y=\sin ^{-1}(x)$ at $x=\frac{1}{\sqrt{2}}$.
10. Let $f(x)=\frac{9}{x}+x$. Find the following.
(a) Domanin of $f(x)$
(b) Critical points of $f(x)$, if any
(c) Intervals of increase and decrease
(d) Local maximum and minimum points, if any
(e) Intervals of concavity
(f) Inflection points, if any
