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A.2  Construction of the Number Systems

The purpose of this section is to provide an outline of the logical development of
our number systems—the natural numbers, integers, rational numbers, real numbers,
and complex numbers. At best, we hope to whet the reader’s appetite. We will only
rarely attempt to give proofs for our statements. However, elsewhere in the text we
study general constructions which include as special cases the construction of the
rational numbers from the integers and the construction of the complex numbers
from the real numbers.

In Chapter 1 we take a naive approach in working with the set of integers.
We have assumed that the reader is willing to accept the familiar properties of the
operations of addition and multiplication. However, it is possible to derive these
properties from a very short list of postulates. They are called the “Peano postulates,”
formulated about the turn of the last century by Giuseppe Peano (1858-1932). A
similar set of axioms was stated by Richard Dedekind at about the same time.
These axioms provide a description of the natural numbers (nonnegative integers
0,1,2,...), denoted by N.

We have chosen to take the language and concepts of set theory as the starting
point of the development of the number systems. This means that the Peano postu-
lates must be stated in set theoretic terms alone. Intuitively, to describe the natural
numbers we begin with 0 and then list successive numbers. The process that extends
the set from one natural number to the next can be described as a function, which
we denote by S in the postulates. We have in mind the formula S(m) = m + 1, al-
though the formula does not yet make sense since - has not been defined. The third
postulate is a statement of the principle of mathematical induction (see Section A.4).

A2.1 Axiom (Peano postulates). The system N of natural numbers is a set N with
a distinguished element O and a function S from N into N which satisfies

(i) S(n) # O for all members n of N,

(i) S(ny) % S(ny) for all members ny 7 ny of N, and

(iii) any subset N' of N which contains 0 and which contains S(n) for all n in
N’ must be equal to N.

The function § utilized in the Peano postulates is called the successor function.
We will use it below to define addition and multiplication of natural numbers. Note
that the assumption that S is a function means that it is possible to define the com-
position of S with itself n times, which we denote by S”". We define S to be the
identity function.

A.2.2 Definition. With the notation of the Peano postulares, let m,n € N.

We define operations of addition and multiplication on N as follows:
m-+n==58"0m) and m-n=(85"0).

We define m = n if the equation m = n -+ x has a solution x € N.
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It is possible to derive the basic arithmetic and order properties of the natural
numbers from the Peano postulates, but that is beyond the scope of what we have
set out to do. After defining the integers Z in terms of N, it is then possible to
extend properties of N to Z. This indication of how the properties which are listed
in Section A.3 can be proved is as much detail as we can provide without digressing.

In Section 1.1 we take the well-ordering principle to be an axiom. Here we
show that it is a direct consequence of the Peano postulates. In Section A.4 we show
that the well-ordering principle implies the principles of mathematical induction,
and so the well-ordering principle is logically equivalent to induction. The last
sentence of the proof of the following theorem depends on the nontrivial fact that
{meN|n<m=< Sn)}isempty.

A.2.3 Theorem (Well-Ordering Principle). Any nonempty set of natural numbers
contains a smallest element.

Proof. (Outline) Let T be a nonempty subset of N and let L be the set of natural
numbers x such that x < 7 for all t € 7. We cannot have L. = N since there is
some natural number 7 in 7, and then ¢ + 1 = $(¢) is not in L. (We are making
use of the function § from the Peano postulates.) This means that L cannot satisfy
the assumptions of postulate (iii), and since we certainly have 0 € L, there must be
some 1 in L with S(n) ¢ L. Thus we have n < r for all 1 € T', and to finish the
proof we only need to show that n € T. If this were not the case, then in factn <1
for afll r € T, and therefore S(n) < forall¢ € T, a contradiction. [

The next step is to use natural numbers to define the set of integers. We can do
this by considering ordered pairs of natural numbers. We know that any negative
integer can be expressed (in many ways) as a difference of natural numbers. To
avoid the use of subtraction, which is as yet undefined, we consider the set N x N,
where an ordered pair (a, b) in N x N is thought of as representing a — b.

Just as with fractions, there are many ways in which a particular integer can be
written as the difference of two natural numbers. For example, (0, 2), (1, 3), (2, 4),
etc., all represent what we know should be —2. We need a notion of equivalence
of ordered pairs, and since we know that we should have a — b = ¢ —d if and
only if @ +d = ¢ + b, we can avoid the use of subtraction in the definition.
The formulas given below for addition and multiplication are motivated by the fact
that we know that we should get (a — b) + (¢ —d) = (a +¢) — (b + d) and
(a — b)(c —d) = (ac + bd) — (ad + bc). If we were going to prove all of our
assertions, we would have to show that the definitions of addition and multiplication
of integers do not depend on the particular ordered pairs of natural numbers which
we choose to represent them.
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A2.4 Definition. The set of integers, denoted by Z, is defined via the set N x N,
where we specify that ordered pairs (a, b) and (¢, d) are equivalent if and only if
a-+d=5b+c

We define addition and multiplication of ordered pairs as follows:

(a,b) + (¢, d) =(a+c,b+d) and  (a,b)(c,d) = (ac + bd, ad + bc) .

It is possible to verify all of the properties of Z that are listed in Section A.3,
using the above definitions and the properties of N. Furthermore, the set N can
be identified with the set of ordered pairs (a, b) such that ¢ > b, and so we can
view N as the set of nonnegative integers. The well-ordering principle can easily
be extended to the statement that any set of integers that is bounded below must
contain a smallest element.

The nextstep is to construct the set of rational numbers Q from the set of integers.
This is a special case of a general construction given in Section 5.4, where detailed
proofs are provided.

A2.5 Definition. The set of rational numbers, denoted by Q, is defined via the set
of ordered pairs (im, n) such thatm, n € Z and n > 0, where we agree that (a, b)
is equivalent to (c, d) if and only if ad = be. We define addition and multiplication
as follows.

(a,b) + (¢, d) = (ad + bc, bd) and (a,b)(c,d) = (ac, bd) .

It is more difficult to describe the construction of the set of real numbers from
the set of rational numbers. The Greeks used a completely geometric approach to
real numbers, and initially considered numbers to be simply the ratios of lengths of
line segments. However, the length of a diagonal of a square with sides of length
1 cannot be expressed as the ratio of two integer lengths, since +/2 is not a rational
number. This makes it necessary to introduce irrational numbers.

A sequence {a,};2 of rational numbers is said to be a Cauchy sequence if for
each € > 0 there exists N such that |a, — a,| < ¢ forall n,m > N. It is then
possible to define the set of real numbers R as the set of all Cauchy sequences of
rational numbers, where such sequences are considered to be equivalent if the limit
of the difference of the sequences is 0. To verify all of the properties of the real
numbers is then quite an involved process.

We note only a few of the properties of real numbers: R is a field (see Section 4.1
for the definition and properties of a field) ordered by <. The set Q is dense in R,
in the sense that between any two distinct real numbers there is a rational number.
Any set of real numbers that has a lower bound has a greatest lower bound, and any
set that has an upper bound has a least upper bound. The Archimedean property
holds; i.e., for any two positive real numbers a, b there exists an integer n such that
na > b.




