Practice Test 1

Note: The actual test will contain 4 problems, and you will need to choose and do any 3 of them.

1. Prove that for any natural n,

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

2. Let $\left\{F_{0}, F_{1}, F_{2}, \ldots\right\}$ be the Fibonacci sequence defined by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}, n \geq 1$. Prove that $F_{n-1}^{2}+F_{n}^{2}=F_{2 n-1}$
3. Kevin is paid every other week on Friday. Show that every year, in some month he is paid three times.
4. Let f be a one-to-one function from $X=\{1,2,3,4,5\}$ onto X. Let $f^{k}=$ $\underbrace{f \circ f \circ \cdots \circ f}_{k \text { times }}$ denote the k-fold composition of f with itself. Show that for some positive integer $m, f^{m}(x)=x$ for all $x \in X$.
5. Six integer numbers, $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, and a_{6} are chosen randomly. Prove that $\prod_{1 \leq i<j \leq 6}\left(a_{i}-a_{j}\right)$ is divisible by 10 .
6. Show that $2^{457}+3^{457}$ is divisible by 5 .
7. Solve for x : $|x+1|+5-x^{2} \geq 0$
