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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, George Gilbert,
László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard Ng, Rajesh
Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below must be submitted by September 30, 2022.
More detailed instructions are available online. Proposed problems must not be
under consideration concurrently at any other journal nor be posted to the internet
before the deadline date for solutions. An asterisk (*) after the number of a problem
or a part of a problem indicates that no solution is currently available.

PROBLEMS

12321. Proposed by Mohammadamin Sharifi, Sharif University of Technology, Tehran,
Iran. Let p be a prime number, and let N be the number of perfect squares m such that
the least nonnegative remainder of p (mod m) is a perfect square. Prove that N is less than
2p1/3.

12322. Proposed by Askar Dzhumadil’daev, Kazakh-British Technical University, Almaty,
Kazakhstan. Given real numbers x1, . . . , x2n, let A be the skew-symmetric 2n-by-2n matrix
with entries ai,j = (xi − xj )

2 for 1 ≤ i < j ≤ 2n. Prove

det(A) = 4n−1
(
(x1 − x2)(x2 − x3) · · · (x2n−1 − x2n)(x2n − x1)

)2
.

12323. Proposed by Erik Vigren, Swedish Institute of Space Physics, Uppsala, Sweden,
and Andreas Dieckmann, Physikalisches Institut der Universität Bonn, Bonn, Germany.
(a) Find integers c0, c1, and c2 such that

∞∑
k=0

k11

(k!)3
=

∞∑
k=0

c0 + c1k + c2k
2

(k!)3
.

(b) Prove that for any integers n and b with 1 ≤ b ≤ n, there are integers cm for
c0, . . . , cb−1 such that

∞∑
k=0

kn

(k!)b
=

∞∑
k=0

(
1

(k!)b

b−1∑
m=0

cmkm

)
.

(c) Prove that the integers cm from part (b) are unique.

12324. Proposed by Albert Stadler, Herrliberg, Switzerland. Let a and b be positive real
numbers. Prove∫ ∞

0

1√
ax4 + 2(2b − a)x2 + a

dx =
∫ ∞

0

1√
bx4 + 2(2a − b)x2 + b

dx.

http://dx.doi.org/doi.org/10.1080/00029890.2022.2044216
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12325. Proposed by Dong Luu, Hanoi University of Education, Hanoi, Vietnam. Let
ABCD be a quadrilateral with a circumscribed circle ω and an inscribed circle γ . Prove
that there are two circles α and β with the following property: For any triangle �MEF

with (1) M on ω, (2) E and F on the line AB, and (3) the lines ME and MF tangent to γ ,
the circumcircle of �MEF is tangent to α and β.

12326. Proposed by George Stoica, Saint John, NB, Canada. Let f : R → R be a con-
tinuous function such that, for every fixed y ∈ R, f (x + y) − f (x) is a polynomial in x.
Prove that f is a polynomial function.

12327. Proposed by Mircea Merca, University of Craiova, Craiova, Romania. Let

[
n

k

]
q

=

⎧⎪⎨
⎪⎩

k−1∏
i=0

1 − qn−i

1 − qk−i
if 1 ≤ k ≤ n;

1 if k = 0.

Prove
n∑

k=0

[
n

k

]
q2

qk =
n∑

k=0

[
n

k

]
q2

qk(k−1)+(n−k)2−n(n−1)/2

for n ≥ 0.

SOLUTIONS

Non-divisors of Translated Sums of Squares

12200 [2020, 660]. Proposed by Ibrahim Suat Evren, Denizli, Turkey. Prove that for every
positive integer m, there is a positive integer k such that k does not divide m + x2 + y2 for
any positive integers x and y.

Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. We prove that
4m2 has the desired property. Let k = 4m2, and let c be a positive integer, so ck − m =
m(4cm − 1). Since 4cm − 1 ≡ −1 (mod 4), the prime factorization of 4cm − 1 must have
an odd power of a prime p with p ≡ −1 (mod 4). Also, since m and 4cm − 1 are relatively
prime, p cannot divide m, so the prime factorization of ck − m has p to an odd power.

The “sum of two squares” theorem in number theory states that the prime factoriza-
tion of a number of the form x2 + y2 has even exponent for each prime congruent to −1
(mod 4). Hence no integers c, x, and y satisfy x2 + y2 + m = ck. This makes it impossible
for k to divide x2 + y2 + m for any integers x and y.

Also solved by R. Boukharfane (Saudi Arabia), R. Chapman (UK), C. Curtis & J. Boswell, S. M. Gagola Jr.,
N. Hodges (UK), E. J. Ionaşcu, Y. J. Ionin, J. S. Liu, O. P. Lossers (Netherlands), S. Miao (China), C. R. Prane-
sachar (India), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
K. Williams (Canada), L. Zhou, FAU Problem Solving Group, and the proposer.

A Large Vector Sum from Probability or Polygons

12202 [2020,752]. Proposed by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong
Kong, China. Let V be a finite set of vectors in R

2 such that
∑

v∈V |v| = π . Prove that
there exists a subset U of V such that |∑v∈U v| ≥ 1.

Solution I by Oliver Geupel, Brühl, Germany. Choose at random a ray h starting from the
origin. For v ∈ V , let Xv be the length of the projection of v onto h if the angle between
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them is acute, and 0 otherwise. The expected value of Xv is

E[Xv] = 1

2π

∫ π/2

−π/2
|v| cos φ dφ = |v|

π
.

Therefore E[
∑

v∈V Xv] = ∑
v∈V E[Xv] = 1, so there is some ray h such that∑

v∈V Xv ≥ 1. We can now let U = {v ∈ V : the angle between h and v is acute}.
Solution II by Elton Bojaxhiu, Tirana, Albania, and Enkel Hysnelaj, Sydney, Australia. Let
V = {v1, . . . , vn}, and define vn+1 so that v1 + · · · + vn+1 = 0. For any vector v, let θ(v)

be the angle from the positive x-axis to v, with 0 ≤ θ(v) < 2π , and let v′
1, . . . , v

′
n+1 be a

permutation of v1, . . . , vn+1 such that θ(v′
1) ≤ · · · ≤ θ(v′

n+1). The endpoints of the partial
sums

∑r
i=1 v′

i form the vertices of a (possibly degenerate) convex polygon. Let p and d be
the perimeter and diameter of this polygon; it is known that p < πd. Thus

π =
∑
v∈V

|v| ≤
n+1∑
k=1

|vk| = p < πd,

so d > 1. The set U can be chosen to be a collection of vectors (not including vn+1) whose
sum gives a diameter of the polygon.

Editorial comment. Kevin Byrnes and Nicolás Caro pointed out that this problem appears
as exercise 14.9 in J. Michael Steele (2004), The Cauchy–Schwarz Master Class: An Intro-
duction to the Art of Mathematical Inequalities, Cambridge: Cambridge Univ. Press, and
also in W. W. Bledsoe (1970), An inequality about complex numbers, this Monthly 77,
pp. 180–182. If p and d are the perimeter and diameter of a convex m-gon, then the inequal-
ity p < πd follows from p ≤ 2m sin(π/(2m))d, proved in H. Sedrakyan and N. Sedrakyan
(2017), Geometric Inequalities: Methods of Proving, Cham, Switzerland: Springer, p. 379.
Radouan Boukharfane and Tom Wilde extended the problem to R

n, where the constant π

generalizes to 2
√

π 	((n + 1)/2)/	(n/2).

Also solved by R. Boukharfane (Saudi Arabia), K. M. Byrnes, N. Caro (Brazil), R. Chapman (UK), R. Frank
(Germany), Y. J. Ionin, Y. Jeong (Korea), J. H. Lindsey II, O. P. Lossers (Netherlands), M. D. Meyerson,
K. Schilling, E. Schmeichel, R. Stong, R. Tauraso (Italy), T. Wilde (UK), and the proposer.

A Family of Sums with Logarithmic Powers

12203 [2020, 752]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. Let m be a nonnegative integer, and let μ be the Möbius function on Z

+,
defined by setting μ(k) equal to (−1)r if k is the product of r distinct primes and equal to
0 if k has a square prime factor. Evaluate

lim
n→∞

1

lnm(n)

n∑
k=1

μ(k)

k
lnm+1

(n

k

)
.

Solution by Albert Stadler, Herrliberg, Switzerland. The limit is m + 1.
For a fixed j ≥ 1, we show that there is a positive constant c such that

n∑
k=1

μ(k)

k
(−1)j lnj k = dj

dsj

1

ζ(s)

∣∣∣∣
s=1

+ O
(
e−c

√
ln n
)

, (1)

where ζ(s) is the Riemann zeta function. We start with

dj

dsj

1

ζ(s)
−

n∑
k=1

μ(k)

ks
(−1)j lnj (k) =

∞∑
k=n+1

μ(k)

ks
(−1)j lnj (k) (2)
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for s > 1, which follows from Dirichlet’s expansion of 1/ζ(s). We now show that (2) holds
also in the case s = 1.

Let M(k) = ∑k
i=1 μ(i). The function M is known as the Mertens function. Partial sum-

mation yields
∞∑

k=n+1

μ(k)

ks
(−1)j lnj (k) =

∞∑
k=n+1

M(k)

ks
(−1)j lnj (k) −

∞∑
k=n

M(k)

(k + 1)s
(−1)j lnj (k + 1)

= M(n)

ns
(−1)j+1 lnj (n) +

∞∑
k=n

M(k)(−1)j

(
lnj (k)

ks
− lnj (k+1)

(k + 1)s

)
.

For s ≥ 1 and x > ej ,

d

dx

lnj (x)

xs
= lnj (x)

xs+1

(
j

ln x
− s

)
< 0.

Moreover,
d

dx

lnj (x)

xs
> −s

lnj (x)

xs+1
,

with the latter increasing in x. Thus, by the mean value theorem,∣∣∣∣∣ ln
j (k)

ks
− lnj (k + 1)

(k + 1)s

∣∣∣∣∣ < s
lnj (k)

ks+1
≤ 2

lnj (k)

ks+1

for 1 ≤ s ≤ 2 and k > ej . Since M(k) = O
(
ke−2c

√
ln k
)

for a suitable positive con-

stant c (see, for instance, E. Landau (1974), Handbuch der Lehre von der Verteilung der
Primzahlen, v. 2, AMS Chelsea Publishing: Providence, p. 570) and since lnj+2(k) =
O
(
ec

√
ln k
)

, we have∣∣∣∣∣M(k)(−1)j

(
lnj (k)

ks
− lnj (k + 1)

(k + 1)s

)∣∣∣∣∣ = O

(
e−c

√
ln k 1

k ln2(k)

)
.

From this we deduce∣∣∣∣M(n)

ns
(−1)j+1 lnj (n) +

∞∑
k=n

M(k)(−1)j

(
lnj (k)

ks
− lnj (k + 1)

(k + 1)s

) ∣∣∣∣
= O

(
e−c

√
ln n
)

+
∞∑

k=n

O

(
e−c

√
ln k 1

k ln2(k)

)

= O
(
e−c

√
ln n
)

+ O

(
e−c

√
ln n 1

ln n

)
= O

(
e−c

√
ln n
)

.

The convergence of the series is uniform for s ∈ [1, 2], so both sides of (2) are continuous
on [1, 2]. Therefore, (2) is valid at s = 1, proving (1).

We conclude

1

lnm(n)

n∑
k=1

μ(k)

k
lnm+1

(n

k

)
= 1

lnm(n)

n∑
k=1

μ(k)

k
(ln n − ln k)m+1

= 1

lnm(n)

m+1∑
j=0

(
m + 1

j

)
lnm+1−j (n)

n∑
k=1

μ(k)

k
(−1)j lnj (k)

= 1

lnm(n)

m+1∑
j=0

(
m + 1

j

)
lnm+1−j (n)

(
dj

dsj

1

ζ(s)

∣∣∣∣
s=1

+ O
(
e−c

√
ln n
))

.
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As n → ∞, all error terms have limit 0. Since ζ(s) is meromorphic with a simple pole
of residue 1 at s = 1, the function 1/ζ(s) is holomorphic at s = 1, and its Taylor series
expansion begins (s − 1) + · · · . The main term vanishes for j = 0 and has limit 0 for
j > 1 as n → ∞. Therefore,

lim
n→∞

1

lnm(n)

n∑
k=1

μ(k)

k
lnm+1

(n

k

)
=
(

m + 1

1

)
d

ds

1

ζ(s)

∣∣∣∣
s=1

= m + 1.

Editorial comment. The proof of the bound on the Mertens function is similar to one for
the prime number theorem. Some solvers used other bounds, shortening their solutions.
Bounds on sums of the form

∑n
k=1 μ(k) lnq(k)/k (Landau, pp. 568–570, 594–595) allow

one to begin with the binomial expansion of ln n − ln k. For m > 0, the solution follows
immediately from

n∑
k=1

μ(k)

k
lnm+1

(n

k

)
= (m + 1) lnm(n) +

m−1∑
k=1

ck(m) lnk(n) + O(1),

which appears on p. 489 of H. N. Shapiro (1950), On a theorem of Selberg and generaliza-
tions, Ann. Math., 485–497.

Also solved by W. Janous (Austria), A. Stenger, R. Stong, and the proposer.

The Sum of Cosines in a Convex Quadrilateral

12204 [2020, 752]. Proposed by Florentin Visescu, Bucharest, Romania. Prove that the
absolute value of the sum of the cosines of the four angles in a convex quadrilateral is less
than 1/2.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
Denote the angles by αi for i ∈ {1, 2, 3, 4}, with 0 < α1 ≤ α2 ≤ α3 ≤ α4 < π . We have∑

αi = 2π . Let a = α1 + α2, and note that a ≤ π and α3 + α4 = 2π − a. If a = π , then
all four angles are π/2, so

∑
cos(αi) = 0, so

∑
αi = 0 and the required inequality holds.

We may therefore assume a < π .
For the sum of the first two cosines,

cos α1 + cos α2 = 2 cos
(a

2

)
cos

(
α2 − α1

2

)
. (1)

Since 0 < α1 ≤ α2, we have

0 ≤ α2 − α1

2
<

α1 + α2

2
= a

2
<

π

2
,

and therefore

cos
(a

2

)
< cos

(
α2 − α1

2

)
≤ 1.

Multiplying by 2 cos(a/2), which is positive, we conclude

2 cos2
(a

2

)
< 2 cos

(a

2

)
cos

(
α2 − α1

2

)
≤ 2 cos

(a

2

)
,

which by (1) implies

2 cos2
(a

2

)
< cos α1 + cos α2 ≤ 2 cos

(a

2

)
. (2)
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Since 0 < π − α4 ≤ π − α3 < π and

(π − α4) + (π − α3) = 2π − (α3 + α4) = a,

we can apply the same reasoning to π − α4 and π − α3 to obtain

2 cos2
(a

2

)
< cos(π − α4) + cos(π − α3) ≤ 2 cos

(a

2

)
,

or equivalently

−2 cos
(a

2

)
≤ cos α3 + cos α4 < −2 cos2

(a

2

)
. (3)

Adding (2) and (3), and putting x = cos(a/2), we get

2x2 − 2x <
∑

αi < 2x − 2x2.

Since the quadratic 2x − 2x2 has maximum value 1/2 at x = 1/2, this proves the inequality.

Editorial comment. The problem statement assumes that all angles are strictly less than π .
If one allows an angle to equal π , then one can achieve a cosine sum of 1/2 by beginning
with an equilateral triangle and adding a fourth vertex along one side, obtaining a four-
sided figure with angles π/3, π/3, π/3, and π . One can obtain quadrilaterals with all angles
less than π and cosine sum arbitrarily close to 1/2 by using angles π/3 + ε, π/3 + ε,
π/3 + ε, and π − 3ε.

Nicolás Caro solved the more general problem of bounding
∑n

i=1 cos xi , given that
0 < xi < π and

∑n
i=1 xi = jπ ; the stated problem is the case n = 4, j = 2.

Also solved by E. Bojazhiu (Albania) & E. Hysnelaj (Australia), R. Boukharfane (Saudi Arabia), N. Caro
(Brazil), R. Chapman (UK), C. Chiser (Romania), G. Fera & G. Tescaro (Italy), L. Giugiuc (Romania), J.-
P. Grivaux (France), N. Hodges (UK), E. J. Ionaşcu, Y. J. Ionin, W. Janous (Austria), A. B. Kasturiarachi,
O. Kouba (Syria), K.-W. Lau (China), Z. Lin (China), J. H. Lindsey II, K. Park (Korea), C. Schacht, E. Schme-
ichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), E. I. Verriest, L. Zhou, and the proposer.

Minimizing a Ratio of Integrals

12205 [2020, 752]. Proposed by Christian Chiser, Elena Cuza College, Craiova, Romania.
Find the minimum value of ∫ 1

0 x2(f ′(x))2 dx∫ 1
0 x2(f (x))2 dx

over all nonzero continuously differentiable functions f : [0, 1] → R with f (1) = 0.

Solution by Jinhai Yan, Fudan University, Shanghai, China. We show that the minimum
value is π2.

Let

g(x) =
{

sin(πx)/x, if x �= 0,

π, if x = 0.

Note that g ∈ C∞[0, 1], g(1) = 0, and g satisfies the Euler–Lagrange equation

d

dx

(
x2g′(x)

) = −π2x2g(x).

Therefore, for any f as in the problem statement,

d

dx

(
x2g′(x)

g(x)
f (x)2

)
= x2

(
2g′(x)

g(x)
f (x)f ′(x) − π2f (x)2 − g′(x)2

g(x)2
f (x)2

)

= x2 (f ′(x)2 − π2f (x)2)− x2

(
f ′(x) − g′(x)

g(x)
f (x)

)2

.
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Note that the singularity at x = 1 on both sides of this equation is removable, because

lim
x→1−

f (x)

g(x)
= lim

x→1−
f ′(x)

g′(x)
= −f ′(1)

π
∈ R.

It follows that∫ 1

0

(
x2
(
f ′(x)2 − π2f (x)2

)− x2

(
f ′(x) − g′(x)

g(x)
f (x)

)2
)

dx = x2g′(x)

g(x)
f (x)2

∣∣∣∣
1

0

= 0.

Thus∫ 1

0
x2f ′(x)2 dx − π2

∫ 1

0
x2f (x)2 dx =

∫ 1

0
x2

(
f ′(x) − g′(x)f (x)

g(x)

)2

dx ≥ 0,

with equality if f = g, and the desired conclusion follows.

Also solved by K. F. Andersen (Canada), R. Boukharfane (Saudi Arabia), P. Bracken, H. Chen, T. Dick-
ens, L. Han, O. Kouba (Syria), P. W. Lindstrom, A. Natian, M. Omarjee (France), A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), E. I. Verriest, and the proposer.

A Skew-Harmonic Formula for Apéry’s Constant

12206 [2020, 752]. Proposed by Seán Stewart, Bomaderry, Australia. Prove

∞∑
n=1

H 2n

n2
= 3

4
ζ(3),

where Hn is the nth skew-harmonic number
∑n

k=1(−1)k+1/k and ζ(3) is Apéry’s constant∑∞
k=1 1/k3.

Solution by Michel Bataille, Rouen, France. With H0 = 0 and Hn = ∑n
k=1 1/k,

H 2m = H2m − 2
m∑

k=1

1

2k
= H2m − Hm =

m∑
k=1

1

m + k
. (1)

Also note that

H2m−1 − Hm−1 −
m+N∑
j=m

(
1

j
− 1

j + m

)
= H2m+N − Hm+N =

2m+N∑
j=m+N+1

1

j
.

As N tends to ∞, the right side tends to 0, so

∞∑
j=m

(
1

j
− 1

j + m

)
= H2m−1 − Hm−1. (2)

Let S = ∑∞
n=1 H 2n/n2. By (1),

S =
∞∑

n=1

1

n2

n∑
k=1

1

n + k
=

∞∑
n=1

1

n

n∑
k=1

1

k

(
1

n
− 1

n + k

)

=
∞∑

n=1

Hn

n2
−

∞∑
n=1

n∑
k=1

1

nk(n + k)
. (3)
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We consider the two terms in this expression separately. First

∞∑
n=1

Hn

n2
=

∞∑
n=1

(
Hn−1

n2
+ 1

n3

)
=

∞∑
n=1

Hn−1

n2
+ ζ(3) = 2ζ(3)

by Euler’s formula
∑∞

n=1 Hn−1/n2 = ζ(3).
To evaluate the double sum in the second term of (3), interchange the order of sum-

mation, use (2), and then manipulate the harmonic terms and use the first part of (1) to
obtain

∞∑
n=1

n∑
k=1

1

nk(n + k)
=

∞∑
k=1

1

k2

∞∑
n=k

(
1

n
− 1

n + k

)
=

∞∑
k=1

H2k−1 − Hk−1

k2

=
∞∑

k=1

H2k − Hk + 1/(2k)

k2
=

∞∑
k=1

H 2k

k2
+ ζ(3)

2
= S + ζ(3)

2
.

Thus

S = 2ζ(3) −
(

S + ζ(3)

2

)
,

and the result follows.

Editorial comment. A simple proof of Euler’s formula for ζ(3) appears in this Monthly
127 (2020), 855. That issue contains the solutions to Problem 12091 and Problem 12102,
both of which also link ζ(3) to infinite series involving harmonic sums.

Many solvers expressed harmonic numbers as integrals from 0 to 1 of the formula for
the sum of a finite geometric series and then performed interchanges. This led to various
integrals with logarithmic integrands and/or dilogarithms. Two known definite integrals
that played a role in many solutions were∫ 1

1

log2(1 − x)

x
dx = 2ζ(3)

and ∫ 1

0

log(1 − x) log(1 + x)

x
dx = −5

8
ζ(3).

Also solved by A. Berkane (Algeria), N. Bhandari (Nepal), R. Boukharfane (Saudi Arabia), K. N. Boyadzhiev,
P. Bracken, B. Bradie, N. Caro (Brazil), A. C. Castrillón (Colombia), H. Chen, N. S. Dasireddy (India), G. Fera
(Italy), M. L. Glasser, R. Gordon, H. Grandmontagne (France), L. Han, E. A. Herman, N. Hodges (UK),
F. Holland (Ireland), W. Janous (Austria), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands),
I. Mezö (China), R. Molinari, V. H. Moll & T. Amdeberhan, K. Nelson, M. Omarjee (France), S. Sharma
(India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), J. Wangshinghin (Canada), T. Wiandt, Y. Xiang
(China), and the proposer.

A Fibonacci Inequality

12213 [2020, 853]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth
Fibonacci number, defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Prove

n∑
k=1

√
Fk−1Fk+2 ≤ √

Fn+1Fn+4 − √
5.
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Solution by Rory Molinari, Beverly Hills, MI. More generally, consider a sequence 〈a〉
of nonnegative real numbers such that an = an−1 + an−2 for n ≥ 2. For n ≥ 2 and d a
nonnegative integer, we prove

n−1∑
k=1

√
ak−1ak+d−1 ≤ √

anan+d − √
a1ad+1.

Setting an = Fn+1 and d = 3 proves the desired inequality.
The identity

∑m
k=j ak = am+2 − aj+1 is easily shown by induction on m. By the

Cauchy–Schwarz inequality,

n−1∑
k=1

√
ak−1ak+d−1 ≤

(
n−1∑
k=1

ak−1

)1/2 (
n−1∑
k=1

ak+d−1

)1/2

= √
(an − a1)(an+d − ad+1).

By the AM-GM inequality,

(an − a1)(an+d − ad+1) = anan+d + a1ad+1 − a1an+d − ad+1an

≤ anan+d + a1ad+1 − 2
√

a1an+dad+1an

= (√
anan+d − √

a1ad+1
)2

.

Editorial comment. The majority of solvers proved the inequality by induction, showing√
Fn+1Fn+4 +√

FnFn+3 ≤ √
Fn+2Fn+5

by squaring both sides and applying the AM-GM inequality. Doyle Henderson used this
approach to generalize to a sequence of real numbers satisfying an ≥ an−1 + an−2 for n ≥ 2
and

√
a0a3 ≤ √

a2a5 − √
a5, obtaining

n∑
k=1

√
ak−1ak+2 ≤ √

an+1an+4 − √
a5.

Also solved by K. F. Andersen (Canada), M. Bataille (France), B. D. Beasley, R. Boukharfane (Saudi Ara-
bia), P. Bracken, B. Bradie, Ó. Ciaurri (Spain), C. Curtis, A. Dixit (India) & S. Pathak (USA), G. Fera (Italy),
D. Fleischman, O. Geupel (Germany), R. Gordon, D. Henderson, N. Hodges (UK), Y. J. Ionin, W. Janous (Aus-
tria), M. Kaplan & M. Goldenberg, K. T. L. Koo (China), O. Kouba (Syria), W.-K. Lai, P. Lalonde (Canada),
K.-W. Lau (China), O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France), J. Pak (Canada), A. Pathak
(India), Á. Plaza (Spain), E. Schmeichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. B. Tyler,
J. Van hamme (Belgium), M. Vowe (Switzerland), J. Vukmirović (Serbia), T. Wiandt, L. Wimmer (Germany),
X. Ye (China), A. Zaidan, L. Zhou, FAU Problem Solving Group, and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C5. Due to Victor Klee, contributed by the editors. Given a set S in R
n, let L(S) be the set

of all points lying on some line determined by two points in S. For example, if S is the set
of vertices of an equilateral triangle in R

2, then L(S) is the union of the three lines that
extend the sides of the triangle, and L(L(S)) is all of R2. If S is the set of vertices of a
regular tetrahedron, then what is L(L(S))?
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Returning the Icing to the Top

C4. From the 1968 Moscow Mathematical Olympiad, contributed by the editors. A round
cake has icing on the top but not the bottom. Cut a piece of the cake in the usual shape of
a sector with vertex angle one radian and with vertex at the center of the cake. Remove the
piece, turn it upside down, and replace it in the cake to restore roundness. Next, move one
radian around the cake, cut another piece with the same vertex angle adjacent to the first,
remove it, turn it over, and replace it. Keep doing this, moving around the cake one radian
at a time, inverting each piece. Show that, after a finite number of steps, all the icing will
again be on the top.

Solution. We solve the general problem in which the central angle of every slice is θ radi-
ans. If 2π/θ is an integer n, then clearly n flips put all the icing on the bottom, and n more
flips return it all to the top. Otherwise, let n = �2π/θ�. We show that the icing returns
to the top for the first time after 2n(n + 1) steps. In the case θ = 1, we have n = 6, and
therefore it takes 84 steps for the icing to return to the top.

Let α = 2π − nθ . Clearly 0 < α < θ . Let β = θ − α, so that α + β = θ . Cut n

consecutive pieces with angle θ (these are the first n pieces to be flipped), leaving a piece
with angle α. Cut each of the n pieces into two
pieces of angle α and β, as in the figure.
Reading counterclockwise, you now have
pieces of width α, β, α, β, . . . , α, with the last
α adjacent to the first. Let A1, . . . , An+1 be
the pieces with angle α, and let B1, . . . , Bn be
the pieces with angle β, with Bi between Ai

and Ai+1, as shown here. You may now dis-
card the knife; no further cutting is necessary.

Imagine that the cake is on a rotating cake
plate and we rotate the cake plate clockwise
through an angle of θ after each piece is
flipped. In the first step, we flip the piece con-
sisting of A1 and B1 and then rotate the plate
clockwise. Piece A1 is now upside down in the original location of piece An+1, and B1

is now upside down in the original location of piece Bn. All other pieces simply rotate
clockwise without being flipped, so for 2 ≤ i ≤ n + 1, Ai moves to the original location
of Ai−1, and for 2 ≤ i ≤ n, Bi moves to the original location of Bi−1. At the end of this
operation the cuts are in the same positions as they were in originally; the net effect of one
step is simply to permute the A and B pieces cyclically, with one of each being flipped.

It is now clear that after n steps the B pieces have completed a full rotation, with each
piece being flipped once, so they are back in their original positions upside down, and after
another n steps they are in their original positions right side up again. Similarly, it takes
2(n + 1) steps for all the A pieces to return to right side up, in their original positions. It
follows that the number of steps needed to return all icing to the top is the least common
multiple of 2n and 2(n + 1), which is 2n(n + 1). Indeed, after this many steps, not only is
the icing on top, but the cake is fully restored to its original configuration.

Editorial comment. This problem appeared, in a somewhat different form, as problem
31.2.8.3 in the 1968 Moscow Mathematical Olympiad. The version given here appears in
P. Winkler (2007), Mathematical Mind-Benders, A K Peters/CRC Press, Wellesley, MA.
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