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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, George Gilbert,
László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard Ng, Rajesh
Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below must be submitted by December 31, 2022.
More detailed instructions are available online. Proposed problems must not be
under consideration concurrently at any other journal nor be posted to the internet
before the deadline date for solutions. An asterisk (*) after the number of a problem
or a part of a problem indicates that no solution is currently available.

PROBLEMS

12335. Proposed by Tom Karzes, Sunnyvale, CA, Stephen Lucas, James Madison Univer-
sity, Harrisonburg, VA, and James Propp, University of Massachusetts, Lowell, MA. A
Gaussian integer is a complex number z such that z = a + bi for integers a and b. Show
that every Gaussian integer can be written in at most one way as a sum of distinct powers
of 1 + i, and that the Gaussian integer z can be expressed as such a sum if and only if i − z

cannot.

12336. Proposed by Szilárd András, Babeş-Bolyai University, Cluj-Napoca, Romania. Let
N be the center of the nine-point circle of triangle ABC, and let D, E, and F be the
orthogonal projections of N onto the sides BC, CA, and AB, respectively. Prove that the
Euler lines of triangles ABC, AEF , BFD, and CDE are concurrent. Prove also that the
point of concurrency is equidistant from the circumcenters of AEF , BFD, and CDE.

12337. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For k ∈ {0, 1, 2}, let

Sk =
∑ (−4)n

2n + 1

(
2n

n

)−1

,

where the sum is taken over all nonnegative integers n that are congruent to k modulo 3.
Prove

(a) S0 =
ln

(
1 + √

2
)

3
√

2
+ π

6
;

(b) S1 =
ln

(
1 + √

2
)

3
√

2
−

ln
(

2 + √
3
)

2
√

3
− π

12
; and

(c) S2 =
ln

(
1 + √

2
)

3
√

2
+

ln
(

2 + √
3
)

2
√

3
− π

12
.
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12338. Proposed by István Mező, Nanjing, China. Prove∫ ∞

0

cos(x) − 1

x (ex − 1)
dx = 1

2
ln

(
π csch(π)

)
.

12339. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania. Let A and B

be complex n-by-n matrices for which A2 + xB2 = y (AB − BA), where x is a positive
real number and y is a real number such that (1/π) cos−1

(
(y2 − x)/(y2 + x)

)
is irrational.

Prove that (AB − BA)n is the zero matrix.

12340. Proposed by Antonio Garcia, Strasbourg, France. Let g : [0, 1] → R be continu-
ous. Prove that

lim
n→∞

n

2n

∫ 1

0

g(x)

xn + (1 − x)n
dx = Cg(1/2)

for some constant C (independent of g) and determine the value of C.

12341. Proposed by George Apostolopoulos, Messolonghi, Greece. Let x1, . . . , xn be pos-
itive real numbers with

∑n
i=1 x2

i ≤ n, and let S = ∑n
i=1 xi . Prove

n∏
i=1

(
1 + 1

xixi+1

)x2
i ≥ 2S2/n,

where xn+1 is taken to be x1.

SOLUTIONS

A Common Coefficient

12209 [2020, 852]. Proposed by Li Zhou, Polk State College, Winter Haven, FL. Prove
n∑

k=0

(−1)k
(

n

k

)(
m + 2n − 2k + 1

m

)
=

n∑
k=0

(
n

k

)(
m + k + 1

m − n

)

for all integers m and n with m ≥ n ≥ 0.

Solution by Michel Bataille, France. We show that both sides equal the coefficient of xm in
the polynomial P defined by

P(x) = (1 + x)m+1(2x + x2)n = (1 + x)m+1((1 + x)2 − 1)n.

Using the binomial theorem twice yields

P(x) = (1 + x)m+1
n∑

k=0

(−1)k
(

n

k

)
(1 + x)2(n−k) =

n∑
k=0

(−1)k
(

n

k

)
(1 + x)2n−2k+m+1

=
n∑

k=0

(−1)k
(

n

k

) 2n−2k+m+1∑
j=0

(
2n − 2k + m + 1

j

)
xj .

This expresses the left side of the identity as the coefficient of xm in the expansion of P(x).
Also,

P(x) = (1 + x)m+1(x(2 + x))n = xn(1 + x)m+1(1 + (1 + x))n,

so another two uses of the binomial theorem yield

P(x) = xn(1 + x)m+1
n∑

k=0

(
n

k

)
(1 + x)k =

n∑
k=0

(
n

k

) m+k+1∑
j=0

(
m + k + 1

j

)
xn+j .
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This shows that the coefficient of xm in the expansion of P(x) is also the right side of the
identity, completing the proof.

Also solved by R. Boukharfane (Saudi Arabia), Ó. Ciaurri (Spain), J. Boswell & C. Curtis, G. Fera (Italy),
N. Hodges (UK), M. Kaplan & M. Goldenberg, O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers
(Netherlands), M. Maltenfort, E. Schmeichel, A. Stadler (Switzerland), R. Stong, F. A. Velandia (Colombia),
M. Vowe (Switzerland), J. Vukmirović (Serbia), J. Wangshinghin, M. Wildon (UK), X. Ye (China), and the
proposer.

A Median Inequality

12214 [2020, 853]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let x, y,
and z be the lengths of the medians of a triangle with area F . Prove

xyz(x + y + z)

xy + zx + yz
≥ √

3F.

Solution by Oliver Geupel, Brühl, Germany. The Cauchy–Schwarz inequality implies that
x2 + y2 + z2 ≥ xy + yz + zx, and therefore

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) ≥ 3(xy + yz + zx). (1)

It is well known that the medians of a triangle with area F are the sides of a triangle with
area K = 3F/4 (see, for example, sections 91–93 in N. Altschiller-Court (1952), College
Geometry, New York: Barnes and Noble). Moreover, it is known that a triangle with sides
x, y, and z and area K satisfies the inequality

9xyz

x + y + z
≥ 4

√
3K (2)

(see item 4.13 on p. 45 of O. Bottema et al. (1969), Geometric Inequalities, Groningen:
Wolters-Noordhoff). Combining (1) and (2), we obtain

xyz(x + y + z)

xy + yz + zx
≥ 3xyz(x + y + z)

(x + y + z)2
= 3xyz

x + y + z
≥ 4

√
3K

3
= √

3F.

Editorial comment. Inequality (2) appeared as part of elementary problem E1861 [1966,
199; 1967, 724] from this Monthly, proposed by T. R. Curry and solved by Leon Bankoff.
The equation K = 3F/4 is also featured as Theorem 10.4 on p. 165 of C. Alsina and
R. B. Nelsen (2010), Charming Proofs: A Journey Into Elegant Mathematics, Washington,
DC: Mathematical Association of America.

Also solved by A. Alt, H. Bai (Canada), M. Bataille (France), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia),
I. Borosh, R. Boukharfane (Saudi Arabia), P. Bracken, S. H. Brown, C. Curtis, N. S. Dasireddy (India), A. Dixit
(India) & S. Pathak (UK), H. Y. Far, G. Fera (Italy), N. Hodges (UK), W. Janous (Austria), M. Kaplan &
M. Goldenberg, P. Khalili, O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands), M. Lukarevski
(Macedonia), A. Pathak (India), C. R. Pranesachar (India), C. Schacht, V. Schindler (Germany), A. Stadler
(Switzerland), N. Stanciu & M. Drăgan (Romania), R. Stong, B. Suceavă, M. Vowe (Switzerland), J. Vuk-
miroviıc (Serbia), T. Wiandt, X. Ye (China), M. R. Yegan (Iran), Davis Problem Solving Group, and the pro-
poser.

Another Incenter-Centroid Inequality

12217 [2020, 944]. Proposed by Giuseppe Fera, Vicenza, Italy. Let I be the incenter and
G be the centroid of a triangle ABC. Prove

3

2
<

AI

AG
+ BI

BG
+ CI

CG
≤ 3.
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Solution by Haoran Chen, Suzhou, China. Let a = BC, b = CA, and c = AB. Also let
s = (a + b + c)/2. Let ma be the length of the median from A, r the radius of the incircle,
and K the point of tangency of the incircle with AB. By the triangle inequality,

2ma <
(a

2
+ b

)
+

(a

2
+ c

)
= 2s.

Also, AG = 2ma/3 and AI > AK = s − a. Therefore

AI

AG
= 3AI

2ma

>
3(s − a)

2s
.

Summing this with the other two analogous inequalities establishes the strict lower bound
of 3/2.

For the upper bound, note that

rs = area of 	ABC = bc sin A

2
,

and therefore

AI 2 = AK

cos(A/2)
· r

sin(A/2)
= (s − a)r

(1/2) sin A
= bc(s − a)

s
.

Also, by Apollonius’s theorem,

4m2
a = 2b2 + 2c2 − a2 = (b + c + a)(b + c − a) + (b − c)2 ≥ 4s(s − a).

Therefore

AI

AG
= 3AI

2ma

≤ 3
√

bc

2s
≤ 3(b + c)

4s
.

Summing this with the other two analogous inequalities establishes the upper bound of 3.

Editorial comment. Problem 12175 [2020, 372; 2021, 952] establishes

AI 2

AG2
+ BI 2

BG2
+ CI 2

CG2
≤ 3.

This can be used to give an alternative proof of the upper bound: By the Cauchy–Schwarz
inequality,

AI

AG
+ BI

BG
+ CI

CG
≤

√
3

(
AI 2

AG2
+ BI 2

BG2
+ CI 2

CG2

)
≤ 3.

Also solved by A. Alt, S. Gayen (India), P. Khalili, S. Lee (Korea), C. R. Pranesachar (India), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, and the proposer.

Composing All Permutations of [n] to Do Nothing

12218 [2020, 944]. Proposed by Richard Stong, Center for Communications Research, La
Jolla, CA, and Stan Wagon, Macalester College, St. Paul, MN. For which positive integers
n does there exist an ordering of all permutations of {1, . . . , n} so that their composition in
that order is the identity?

Solution by S. M. Gagola Jr., Kent State University, Kent, OH. Such an ordering of permu-
tations is possible for n = 1 (trivially) and for all n at least 4.

When n is 2 or 3, the number of permutations with odd parity is odd, so no composition
in these cases can have even parity like the identity. Note, however, that when n = 3 the
product of the three distinct transpositions always equals the middle factor (t1t2t3 = t2).
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Before considering n ≥ 4, it is useful to note that any group of even order has an odd
number of elements of order 2. To see this, pair the elements of the group with their
inverses. The identity element and the elements of order two (involutions) are self-paired,
while the remaining elements form sets of size 2. Since the group has even order, the num-
ber of involutions is therefore odd.

If in a group of even order a product of the involutions (in some order) can be shown
to equal the identity, then the remaining elements can be paired with their inverses to
yield a product of all the elements equaling the identity. Hence it suffices to show that for
n ≥ 4, the involutions of the symmetric group Sn can be ordered so that their product is the
identity.

The nine involutions in S4 can be partitioned into three triples as follows:

{(12), (34), (12)(34)}, {(13), (24), (13)(24)}, {(14), (23), (14)(23)}.
The product of the three involutions in any one subset (in any order) equals the identity;
this completes the n = 4 case.

For n = 5, we partition the involutions in S5 into sets I1, . . . , I5 and order each set to
obtain a product yielding the identity. For I1 we take the nine involutions on {2, 3, 4, 5}.
By the n = 4 case, there is a product of these yielding the identity. For j ≥ 2, let Ij con-
sist of all involutions that exchange 1 and j . One element is (1j), and each of the other
three elements is the product of (1j) and a transposition of two of the three elements of
{2, 3, 4, 5} − {j}. Each of the four elements of Ij transposes 1 and j , and we have noted
that the product of the three transpositions on a set of size 3 can be ordered to yield any
one of the three transpositions. We can therefore choose orderings of each of I2, I3, I4,
and I5 so that their products are (45), (45), (23), and (23), respectively. Combining these
orderings completes the n = 5 case.

The solutions for n = 4 and n = 5 provide a basis for a proof by induction. We write [n]
for {1, . . . , n}. For n ≥ 6, partition the involutions of Sn into the n sets I1, . . . , In, where
I1 consists of all the involutions on [n] − {1}, and Ij for j ≥ 2 consists of all involutions
exchanging 1 and j . The n − 1 case yields an ordering of I1 that produces the identity.
For j ≥ 2, each element of Ij consists of the transposition (1j) times an element of the
symmetric group on [n] − {1, j} that is the identity or an involution. As noted earlier, Ij

thus has even size, and hence any product of the elements of Ij leaves 1 and j in place.
Furthermore, the n − 2 case guarantees that the elements of Ij other than (1j) can be
ordered so that their effect on [n] − {1, j} is the identity. Doing this independently for all
Ij completes the proof.

Editorial comment. The problem is a special case of a result from J. Dénes and P. Hermann
(1982), On the product of all elements in a finite group, in E. Mendelsohn, ed., Algebraic
and geometric combinatorics, North-Holland Math. Stud. 65, Amsterdam: North-Holland,
pp. 105–109. A special case of their theorem that still includes the problem here is proved
more simply in M. Vaughan-Lee and I. M. Wanless (2003), Latin squares and the Hall–
Paige conjecture. Bull. London Math. Soc. 35, no. 2, 191–195.

The solver Gagola noted that if a group G of even order has a cyclic Sylow 2-subgroup,
then there is a normal 2-complement N , and the product of the elements of G taken in
any order always represents a coset of order 2 in the factor group G/N . Therefore, this
product can never equal the identity element. He then asked whether a group of even order
that does not have a cyclic Sylow 2-subgroup always has an ordering of the elements so
that the resulting product produces the identity. As Vaughan-Lee and Wanless wrote, “The
Hall–Paige conjecture deals with conditions under which a finite group G will possess a
complete mapping, or equivalently a Latin square based on the Cayley table of G will
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possess a transversal. Two necessary conditions are known to be: (i) that the Sylow 2-
subgroups of G are trivial or noncyclic, and (ii) that there is some ordering of the elements
of G which yields a trivial product. These two conditions are known to be equivalent, but
the first direct, elementary proof that (i) implies (ii) is given here.” Thus the answer to
Gagola’s question is yes.

Also solved by F. Chamizo & Y. Fuertes (Spain), D. Dima (Romania), O. Geupel (Germany), N. Hodges (UK),
Y. J. Ionin (USA) & B. M. Bekker (Russia), O. P. Lossers (Netherlands), M. Reid, A. Stadler (Switzerland),
R. Tauraso (Italy), T. Wilde (UK), and the proposers.

A Vanishing Sum of Stirling Numbers

12219 [2020, 944]. Proposed by Brad Isaacson, New York City College of Technology,
New York, NY. Let k and m be positive integers with k < m. Let c(m, k) be the number
of permutations of {1, . . . , m} consisting of k cycles. (The numbers c(m, k) are known as
unsigned Stirling numbers of the first kind.) Prove

m∑
j=k

(−2)j
(
m

j

)
c(j, k)

(j − 1)!
= 0

whenever m and k have opposite parity.

Solution by Roberto Tauraso, University of Rome Tor Vergata, Rome, Italy. Let

Fm(x) =
m∑

k=1

(−x)k
m∑

j=k

(−2)j
(
m

j

)
c(j, k)

(j − 1)!
.

Here Fm(x) is a generating function for the desired sum, evaluated at the negative of the
formal variable. We aim to show that the coefficients of odd powers of x are 0 when m is
even, and the coefficients of even powers of x are 0 when m is odd. For this it suffices to
show

Fm(−x) = (−1)mFm(x).

The well-known generating function for the unsigned Stirling numbers of the first
kind is given by

∑j

k=1 c(j, k)yk = ∏j−1
i=0 (y + i) (easily proved combinatorially). Setting

y = −x yields
∑j

k=1(−1)j−kc(j, k)xk = ∏j−1
i=0 (x − i).

We interchange the order of summation to take advantage of this identity. Let x be an
integer with x ≥ m. We compute

Fm(x) =
m∑

j=1

2j
(
m

j

)
(j − 1)!

j∑
k=1

(−1)j−kc(j, k)xk =
m∑

j=1

2j
(
m

j

)
(j − 1)!

j−1∏
i=0

(x − i)

= m

m∑
j=1

2j

(
m − 1

j − 1

)(
x

j

)
= m

m∑
j=1

(
m − 1

m − j

)(
x

j

)
2j

= m[zm](1 + z)m−1(1 + 2z)x = m[zm](1 + z)x+m−1

(
1 + z

1 + z

)x

,

where [zm] is the “coefficient operator” extracting the coefficient of zm in the expression
that follows it.

To extract the coefficient of zm in a different way, we apply the binomial theorem twice
to obtain

690 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 129



(1 + z)x+m−1

(
1 + z

1 + z

)x

=
x∑

j=0

(1 + z)x+m−j−1

(
x

j

)
zj

=
x∑

j=0

(
x

j

)
zj

x+m−j−1∑
k=0

(
x + m − j − 1

k

)
zk.

To extract all the contributions to the coefficient of zm, restrict j to run from 0 to m, and
set k = m − j in the inner sum. This leads to the formula

Fm(x) = m[zm](1 + z)x+m−1

(
1 + z

1 + z

)x

= m

m∑
j=0

(
x + m − j − 1

m − j

)(
x

j

)
.

Viewing
(
x

j

)
as a polynomial in x, this is a polynomial equation that holds for every integer

x with x ≥ m. It therefore holds for all real numbers x. Thus, by reversing the index of
summation and using (−y

r

)
= (−1)r

(
y + r − 1

r

)
,

we obtain

Fm(−x) = m

m∑
j=0

(−x + m − j − 1

m − j

)(−x

j

)
= m

m∑
j=0

(−(x − j + 1)

j

)( −x

m − j

)

= m

m∑
j=0

(−1)j
(

x

j

)
· (−1)m−j

(
x + m − j − 1

m − j

)
= (−1)mFm(x),

as desired.

Editorial comment. In addition to the polynomials studied above, solvers used induction,
contour integration, generating function manipulations, or primitive Dirichlet characters.

There is a direct combinatorial proof of the needed identity
m∑

j=1

2j

(
m − 1

j − 1

)(
x

j

)
=

m∑
j=0

(
x + m − j − 1

m − j

)(
x

j

)

in the proof given above. Both sides count the distinguishable ways to place m balls in x

boxes, where balls may be black or white, with each box having at most one white ball but
any number of black balls. On the left side, j is the number of boxes that have balls: Pick
the boxes, distribute the balls with a positive number in each chosen box, and decide for
each chosen box whether to make one of the balls white. On the right side, j is the number
of white balls: Pick boxes for them, and independently distribute m − j black balls into
the x boxes with repetition allowed.

Also solved by N. Hodges (UK), O. Kouba (Syria), P. Lalonde (Canada), A. Stadler (Switzerland), J. Wangsh-
inghin (Canada), and the proposer.

A Limit Related to the Basel Problem

12220 [2020, 944]. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National Col-
lege, Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania. Let an = ∑n

k=1 1/k2 and bn = ∑n
k=1 1/(2k − 1)2. Prove

lim
n→∞ n

(
bn

an

− 3

4

)
= 3

π2
.
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Solution by Charles Curtis, Missouri Southern State University, Joplin, MO. Note that

bn =
2n∑

k=1

1

k2
− 1

4

n∑
k=1

1

k2
= 3

4

n∑
k=1

1

k2
+

2n∑
k=n+1

1

k2
= 3

4
an +

2n∑
k=n+1

1

k2
.

Therefore

n

(
bn

an

− 3

4

)
= n

an

2n∑
k=n+1

1

k2
= n

an

n∑
k=1

1

(n + k)2
= 1

an

[
1

n

n∑
k=1

1

(1 + k/n)2

]
.

It is well known that an converges to π2/6 (this is often called the Basel problem). The
expression in square brackets can be interpreted as a Riemann sum, yielding

lim
n→∞

1

n

n∑
k=1

1

(1 + k/n)2
=

∫ 2

1

1

x2
dx = 1

2
.

Hence we get the desired result.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), F. R. Ataev (Uzbek-
istan), M. Bataille (France), N. Batir (Turkey), A. Berkane (Algeria), N. Bhandari (Nepal), R. Boukharfane
(Morocco), P. Bracken, B. Bradie, V. Brunetti & J. Garofali & A. Aurigemma (Italy), F. Chamizo (Spain),
H. Chen, C. Chiser (Romania), G. Fera (Italy), D. Fleischman, O. Geupel (Germany), D. Goyal (India), N. Gri-
vaux (France), J. A. Grzesik, L. Han, J.-L. Henry (France), E. A. Herman, N. Hodges (UK), F. Holland (Ire-
land), R. Howard, W. Janous (Austria), O. Kouba (Syria), H. Kwong, P. Lalonde (Canada), G. Lavau (France),
S. Lee, P. W. Lindstrom, O. P. Lossers (Netherlands), C. J. Lungstrom, J. Magliano, R. Molinari, A. Natian,
S. Omar (Morocco), M. Omarjee (France), M. Reid, S. Sharma (India), J. Singh (India), A. Stadler (Switzer-
land), S. M. Stewart (Australia), R. Stong, M. Tang, R. Tauraso (Italy), D. Terr, D. B. Tyler, D. Văcaru (Roma-
nia), J. Vinuesa (Spain), M. Vowe (Switzerland), J. Wangshinghin (Canada), T. Wiandt, Q. Zhang (China),
Missouri State University Problem Solving Group, and the proposer.

A Logarithmic Integral Evaluated by Residues

12221 [2020, 945]. Proposed by Necdet Batır, Nevşehir Hacı Bektaş Veli University,
Nevşehir, Turkey. Prove ∫ 1

0

log(x6 + 1)

x2 + 1
dx = π

2
log 6 − 3G,

where G is Catalan’s constant
∑∞

k=0(−1)k/(2k + 1)2.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. Let I denote the requested inte-
gral. Writing I as a sum of two integrals and then making the change of variable t = 1/x

in the first integral, we obtain

I =
∫ 1

0

log(1 + 1/x6)

1 + x2
dx + 6

∫ 1

0

log x

1 + x2
dx =

∫ ∞

1

log(1 + t6)

1 + t2
dt + 6

∫ 1

0

log x

1 + x2
dx,

and therefore

2I =
∫ ∞

0

log(1 + x6)

1 + x2
dx + 6

∫ 1

0

log x

1 + x2
dx.

To evaluate the last integral, we express 1/(1 + x2) as an infinite series:∫ 1

0

log x

1 + x2
dx =

∫ 1

0

( ∞∑
k=0

(−1)kx2k

)
log x dx.

Since the partial sums of the series are bounded in absolute value by 1, the dominated
convergence theorem justifies interchanging the order of summation and integration, and
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then an integration by parts yields∫ 1

0

log x

1 + x2
dx =

∞∑
k=0

(−1)k
∫ 1

0
x2k log x dx =

∞∑
k=0

(−1)k+1

(2k + 1)2
= −G.

Thus,

2I =
∫ ∞

0

log(1 + x6)

1 + x2
dx − 6G,

so the required result follows from∫ ∞

−∞
log(1 + x6)

1 + x2
dx = 2π log 6, (1)

which we now prove using the method of residues.
For z = |z|eiθ with |z| > 0 and −π < θ ≤ π , define Log z = log |z| + iθ . The func-

tion Log z is analytic on the open upper half-plane. For R > 1 let CR denote the contour
z = Reiθ , 0 ≤ θ ≤ π . Let

P1(z) = z + i, P2(z) = z − √
3/2 + i/2, and P3(z) = z + √

3/2 + i/2.

For j ∈ {1, 2, 3}, the function Log Pj (z) is analytic on the closed upper half-plane, and
therefore the residue theorem yields∫ R

−R

Log Pj (x)

1 + x2
dx +

∫
CR

Log Pj (z)

1 + z2
dz = 2πi Res

(
Log Pj (z)

1 + z2
, i

)

= π Log Pj (i). (2)

Since ∣∣∣∣
∫

CR

Log Pj (z)

1 + z2
dz

∣∣∣∣ ≤ πR
(log(R + 1) + π)

R2 − 1
,

letting R → ∞ in (2) and then taking the real part of the resulting identity yields∫ ∞

−∞
log |Pj (x)|

1 + x2
dx = π log |Pj (i)|.

Finally, since

x6 + 1 = (
x2 + 1

)(
x2 − √

3x + 1
)(

x2 + √
3x + 1

)
= (

x2 + 1
)(

(x − √
3/2)2 + 1/4

)(
(x + √

3/2)2 + 1/4
)

= |P1(x)|2|P2(x)|2|P3(x)|2,
we have∫ ∞

−∞
log(1 + x6)

1 + x2
dx =

3∑
j=1

∫ ∞

−∞
2 log |Pj (x)|

1 + x2
dx

=
3∑

j=1

2π log |Pj (i)| = 2π
(

log 2 + log
√

3 + log
√

3)

= 2π log 6,

which completes the proof of (1).

Editorial comment. Several solvers noted that a similar problem appeared as problem 2107
in Math. Mag. 93 (2020), p. 389.
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Also solved by U. Abel & V. Kushnirevych (Germany), F. R. Ataev (Uzbekistan), M. Bataille (France),
A. Berkane (Algeria), N. Bhandari (Nepal), K. N. Boyadzhiev, P. Bracken, B. Bradie, V. Brunetti & J. Garo-
fali & J. D’Aurizio (Italy), H. Chen, B. E. Davis, G. Fera (Italy), M. L. Glasser, R. Gordon, H. Grandmon-
tagne (France), J. A. Grzesik, L. Han, D. Henderson, E. A. Herman, N. Hodges (UK), F. Holland (Ireland),
P. Khalili, O. Kouba (Syria), Z. Lin (China), O. P. Lossers (Netherlands), T. M. Mazzoli (Austria), M. Omar-
jee (France), V. Schindler (Germany), J. Singh (India), A. Stadler (Switzerland), S. M. Stewart (Australia),
R. Stong, R. Tauraso (Italy), D. Văcaru (Romania), T. Wiandt, M. R. Yegan (Iran), and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C7. Contributed by Alan D. Taylor, Union College, Schenectady, NY. Are the additive group
of real numbers and the additive group of complex numbers isomorphic?

Random Tetrahedra Inscribed in a Sphere

C6. Contributed by David Aldous, University of California, Berkeley, CA. Consider four
random points on the surface of a sphere, chosen uniformly and independently. Prove that
the probability that the tetrahedron determined by the points contains the center of the
sphere is 1/8.

Solution. Assume the sphere is in R
3 centered at the origin O. Fix the point P4 and then

choose P1, P2, P3 by randomly choosing three diameters, D1, D2, and D3, and then choos-
ing, randomly, an end of each. There are eight ways to choose the endpoints. The prob-
ability conclusion follows from the observation that, for almost all choices of diameters,
exactly one of the eight choices of endpoints yields a tetrahedron containing O.

To see this, assume that P1, P2, and P3 are chosen so that no three of the points
P1, P2, P3, P4 are linearly dependent as vectors in R

3. (The opposite case has probability
0.) The equation −P4 = xP1 + yP2 + zP3 has a unique solution in nonzero real numbers
x, y, and z. Write this as O = xP1 + yP2 + zP3 + P4. The eight choices of endpoints now
correspond to the eight choices of signs in the expression O = ±xP1 ± yP2 ± zP3 + P4.
The tetrahedron contains O if and only if there is a representation O = a1P1 + a2P2 +
a3P3 + a4P4 where ai > 0 for all i. This happens if and only if the coefficients ±x,±y,±z

are all positive, and that occurs for exactly one of the eight equally likely choices.

Editorial comment. This was problem A6 on the 1992 Putnam Competition. For a geomet-
ric explanation of what is happening, see the 3blue1brown video “The hardest problem on
the hardest test” at youtube.com/watch?v=OkmNXy7er84. In J. G. Wendel (1962), A prob-
lem in geometric probability, Math. Scand. 11: 109–111, it is proved that for k points on
the sphere in R

n , the probability pn,k that the convex hull of the points contains the origin
is

∑k−1
j=n

(
k−1
j

)/
2k−1. A corollary is the surprising duality formula pm,m+n + pn,m+n = 1.

According to Wendel, the problem goes back to R. E. Machol and was first solved by L. J.
Savage.

Some further generalizations can be found in R. Howard and P. Sisson (1996), Capturing
the origin with random points: Generalizations of a Putnam problem, College Math. J.,
27(3): 186–192.
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