
Full Terms & Conditions of access and use can be found at
https://maa.tandfonline.com/action/journalInformation?journalCode=umho20

Math Horizons

ISSN: (Print) (Online) Journal homepage: https://maa.tandfonline.com/loi/umho20

The Playground

To cite this article: (2022) The Playground, Math Horizons, 30:1, 30-33, DOI:
10.1080/10724117.2022.2092341

To link to this article:  https://doi.org/10.1080/10724117.2022.2092341

Published online: 25 Aug 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://maa.tandfonline.com/action/journalInformation?journalCode=umho20
https://maa.tandfonline.com/loi/umho20
https://maa.tandfonline.com/action/showCitFormats?doi=10.1080/10724117.2022.2092341
https://doi.org/10.1080/10724117.2022.2092341
https://maa.tandfonline.com/action/authorSubmission?journalCode=umho20&show=instructions
https://maa.tandfonline.com/action/authorSubmission?journalCode=umho20&show=instructions
https://maa.tandfonline.com/doi/mlt/10.1080/10724117.2022.2092341
https://maa.tandfonline.com/doi/mlt/10.1080/10724117.2022.2092341
http://crossmark.crossref.org/dialog/?doi=10.1080/10724117.2022.2092341&domain=pdf&date_stamp=2022-08-25
http://crossmark.crossref.org/dialog/?doi=10.1080/10724117.2022.2092341&domain=pdf&date_stamp=2022-08-25


30 September 2022 | Math Horizons     www.maa.org/mathhorizons

In this section, we highlight problems 
that anyone can play with, regardless of 
mathematical background. But just because 
these problems are easy to approach doesn’t 
mean that they are easy to solve!

Limitations of a Limit Theorem (P438). George 
Stoica (Saint John, Canada) proposed this 
problem. Let ai be a sequence of real numbers. 
A standard calculus theorem states that if 
limn ii

n
a→∞ =∑ 1  converges then =→∞ ai ilim 0. 

Prove that the conclusion =→∞ ai ilim 0 can 
be false under the weaker hypothesis that 
limn ii n

n
a→∞ = +

∑ /2 1
 exists.

These open-ended problems don’t have a 
previously-known exact solution, so we intend 
for readers to fool around with them. The 
Playground will publish the best submissions 
received (proofs encouraged but not required).

Consecutively and Squarely Correct (P439). 
George Berzsenyi (Rose-Hulman Institute of 
Technology and the first editor of this column) 
suggests the next problem, which is attributed 
to Bernard Recamán (Bogotá, Colombia). A 
positive integer is squarely correct if it is a 
perfect square or if its base-10 representation 
consists entirely of adjacent blocks of digits 
that are positive perfect squares. For example, 
99 and 100 are two consecutive numbers that 
are both squarely correct. However, 101 is 
not squarely correct—all-zero blocks are not 
allowed. 

1) Are there infinitely many pairs of 
consecutive squarely correct numbers? 

2) Is it possible to find three or more 
consecutive squarely correct numbers?

This section offers problems with connections 
to articles that appear in the magazine. Not 
all Zip Line problems require you to read the 
corresponding article, but doing so can never 
hurt, of course.

e-rrational Multiplication (P440). This problem 
from Christopher Havens (Twin Rivers PMP) 
connects to his article with Amy Shell-Gellasch 
“Fibonacci Meets the Pharaohs: The Decomposition 
of Multiplication” (p. 24). Christopher asks us 
to consider a multiplication based on Euler’s 
constant e.

Let s be a real number and  
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be its continued fraction expansion where 
the nth convergent of s is given by 

= …p q a a a an n n/ [ ; , , , ]0 1 2 . The s-Ostrowski 
decomposition of a natural number m consists of 
an integer t and a unique sequence =ck k

t( ) 0 with

∑= = + + +
=

m c q c q c q c qk
k

t

k t t
0

0 0 1 1

such that ≤ ≤ +c ak k0 1 for all k, ≤ <c a0 ,0 1   and 
for all >k 0, if = +c ak k 1 then =−ck 0.1

Let = = =
∞s e k k[2;1,2 ,1] .1  Find the e-Ostrowski 

decomposition of 179 and use it to compute the 
product of 179 and 42 following the suggestion 

THE
PLAYGROUND

Welcome to the Playground! 
Playground rules are posted 
on page 33, except for the 

most important one: Have fun!

THE SANDBOX

THE ZIP LINE

THE MONKEY BARS
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from the article that Fibonacci multiplication can 
be adapted to other recursively defined sequences.

Any type of problem may appear in the Jungle 
Gym—climb on! 

Circle Sleuth (P441). 
Gregory Dresden 
(Washington & 
Lee University) 
plotted the graph 
of the polar curve 

q q= +r cos2 (7 / 5)cos   
in the Cartesian plane 
for values of q where 

qcos2  exists, shown 
in figure 1. Determine 
(with justification) 

whether the graph is a circle.

Uniform Three-step 
(P422). António 
Guedes de Oliveira 
(University of 
Porto, Portugal) 
posed this classical 
ruler-and-compass 
construction 
challenge. Given an 
arbitrary triangle 

ABC, construct points P and Q on rays 
� ���
AC  and � ���

BC, respectively, so that all three segments AP, 
PQ, and QB are congruent (as in the example 
in figure 2).

We received a solution from Angelo Rosso 
and Mihaela Dobrescu of Christopher Newport 
University and one from a PMP member in Texas. 
The approaches of these and of the proposer’s 
solution are all completely different. The CNU 
team performed a trigonometric calculation 
with ruler and compass and the proposer found 
P by intersecting AC with the Apollonian circle 
through B with respect to A and a point O, which 
is the center of rotation taking ray AC to ray BC. 
We present the elegant solution from Texas.

Imagine scaling the 
given triangle via a 
homothety through 
A (that is, keeping 
A fixed and scaling 
along all rays from 
A) such that AC is 
exactly the first of 
the three uniform 
steps, as illustrated 
in figure 3. This 
scaling moves B to 
F and Q to E such 
that = =AC CE EF. 

But note that if D is the point on ray BC such that 
=AC BD, then BFED is a parallelogram. Hence, 

mark off this D, construct the parallel to AB through 
D, and intersect that parallel with the circle about C 
through A to find point E. The desired point Q is then 
the intersection of BC and AE (and P can be found 
by marking length BQ off on ray AC).

Icocentral Angle 
(P430). Bjorn 
Poonen (MIT) 
proposed this 
problem. Let point 
O be the center of 
regular icosahedron 
I. Let A and B be the 
midpoints of any 
two edges of I, as 
in the example in 
figure 4. Show that 
the measure of angle 
AOB in degrees is 
an integer. What 
integers can it be?

We received solutions from Katherine Nogin 
(Clovis North HS), Randy K. Schwartz (Schoolcraft 
College), problem-solving groups at Christopher 
Newport University and Georgia Southern 

Figure 1. A 
circular graph?

THE JUNGLE GYM

THE CAROUSEL—OLDIES, BUT GOODIES

In this section, we present an old problem 
that we like so much, we thought it deserved 
another go-round. Try this, but be careful—
old equipment can be dangerous. Answers 
appear at the end of the column.

Integer Swap Polynomials (C38).  Suppose 
that g(x) is a polynomial with integer coeffi-
cients that swaps distinct integers a and b: 
g(a) = b and g(b) = a.

1) Prove that if g(t) = t for some integer t, 
then +a b is even and = +t a b( ) / 2.

2) Show that for any distinct integers a 
and b with a + b even, there exists such 
a function g(x) both with and without a 
fixed point.

FEBRUARY WRAP-UP

Figure 2. An example of 
the construction called 
for in Uniform Three-step.

Figure 3. Homothetic 
expansion about A so 
that the first uniform 
step is AC (drawn 
by problem solver).

Figure 4. An icosahedron 
with the central 
angle formed by the 
midpoints of two edges.
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University, and from 
the PMP member 
in Texas. The latter 
provided the proof 
without words (or 
very nearly so) in 
figure 5 that shows 
the possible angles 
are all the multiples 
of 36°, 60°, and 90°.

Möbius Malachite 
(P431). This 
problem came 
to us courtesy of 
Randy K. Schwartz 
(Schoolcraft 
College). The 
Möbius Malachite 
is displayed on 
a platform at 
the center of a 
circular chamber of 
radius one meter. 
The platform is 
supported by a 
pole (of negligible 
diameter) 
containing a laser 
detection beam that 
sweeps around the 

room at a constant rate of once per second (see 
figure 6).

You want to construct a robot scooter that can 
enter the chamber and reach the base of the pole 
without ever intersecting the beam. Assuming the 
scooter travels at a constant speed along a path 
of your choice, what’s the slowest it can move 
and still reach the pole?

The proposer and the PMP member from 
Texas suggest the following identical speed and 
essentially identical path as optimal, offering 
intuitive justifications. A proof of optimality (or a 
better path) would be welcome.

The scooter’s strategy is, immediately as the 
laser passes point S, to embark on a tangent ST 
to the circle c around the pole P of radius 

t=r s / , where s is the scooter’s speed. (That 
circle is chosen because along c the scooter is 
just fast enough to keep ahead of the rotating 
laser.) Then the speed s is chosen so that the 
scooter arrives at T just as the laser has made 
one full revolution (t radians) plus q = ∠SPT  
(see figure 7).

This strategy leads to the equation

τ θ θ τ θ+ = + = =r s ST r( ) (1 / ) tan ,

or simply θ τ θ= +tan . Both solvers then 
determine q numerically (approximately 1.442 
radians) leading to »s 0.8066 m/s—well below 
the 1 m/s required to dash directly from S to P.

Incidentally, how does the scooter then make 
it to the pole rather than endlessly orbit at a 
distance r from the pole? As the proposer points 
out, figure 7 also shows (in red) that the scooter 
may follow the semicircle with diameter TP 
because in any angular increment around P, the 
arclength along c is equal to the arclength along 
the semicircle.

Permutation Rotation (P432). Lara Pudwell 
posed these questions related to her article “The 
Hidden and Surprising Structure of Ordered 
Lists.” One can think of a permutation p on n 
objects as a function from ¼ n{1, , } to itself that 
takes on every value in ¼ n{1, , }. (In other words, 
p is onto; and as n is finite, p must be a bijection.) 
The graph of a permutation is the collection of 
points £ £i p i i n{( , ( )) : 1 } in the xy-plane. 

1) How many permutations on six objects have 
a graph that is unchanged after rotation 
by 180 degrees (about the point (7/2, 7/2), 

specifically)? Figure 8 
shows an example 
permutation with 
this property.
2)   In general, find 

(with proof) 
the number of 
permutations on 
n objects that 
have this property 
(with respect to 
the appropriate 
center of rotation).

Dmitry Fleischman, 
Randy K. Schwartz, 
and the Georgia 

Figure 5. A regular 
icosahedron with its three 
possible cross sections 
containing noncollinear 
edge midpoints.

Figure 6. Robot scooter 
S preparing to reach the 
pole supporting Möbius 
Malachite M. 

Figure 7. A proposed scooter path. 

Figure 8. The graph of 
permutation 214365, 
which has twofold 
rotational symmetry. 
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Southern problem solvers submitted solutions. 
We follow the approach of the “Eagle Solvers” 
from Georgia for part two, which provides the 
answer for part one as well.

The 180° rotation of the square ´n n[1, ] [1, ] takes 
the point i j( , ) to the point + − + −n i n j( 1 , 1 ). Thus 
a rotation-invariant permutation p must satisfy 
+ − = + −p n i n p i( 1 ) 1 ( ). This means that the 

values …  p p p n(1), (2), , ( / 2 ) determine the values 
of p k( ) for > +k n( 1) / 2; and when n is odd, we 
must have + = +p n n(( 1) / 2) ( 1) / 2. Thus, there 
are  n2 / 2  possible values for p(1) (any value from 
1 to n for n even, and any of these values except 

+n( 1) / 2 for n odd). A choice j for p(1) eliminates 
both j and = + −p n n j( ) 1  as choices for p(2), 
so there are two fewer options for p(2), and so 
on. Hence the total number of rotation-invariant 
permutations is
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This means there are = ⋅ ⋅ = 486!! 6 4 2  rotation-
invariant permutations on six objects.

Binomial Determinant (P433). This problem 
was submitted by George Stoica (Saint John, 
Canada). Let An be the ´n n matrix where the 
entry in row i and column j is given by the 
binomial coefficient 

+
−











n
i j

1

2
,

with the convention that this coefficient has 
value 0 when -i j2  is negative or larger than 
+n 1. Show

= = ( )+
+
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n n

n

det 2 2 .( 1) /2
1

2

A numerical solution establishing the result for 
£n 5 was submitted by Dmitry Fleischman. We 

present the general argument from the proposer.
Let B be the ´n n lower triangular matrix of 

ones, which has determinant one, and check 
that the entries of -B 1 are =bi i 1, , =−+bi i 1,1,  and 

=bi j 0,  otherwise. We claim that for ³n 2, -BA Bn
1 

is a matrix with the block form 

=
















− − v
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n
n

n2
,1 1

where v is an irrelevant − ×n( 1) 1 column vector.
Because =A [2],1  the result follows by 

induction. Multiplying out on the left-hand side, 
the claim only requires that for £i n and <j n,
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CAROUSEL SOLUTION

Suppose g(t) = t for some integer t. Then 
a, b, and t are distinct because g(x) 
swaps a and b and fixes t. Observe that 

− = −g x g y x y Q x y( ) ( ) ( ) ( , ) where Q x y( , ) is 
a polynomial with integer coefficients. Now 
− = −a b Q a b b a( ) ( , ) ; − = −a t Q a t b t( ) ( , ) ; and 
− = −b t Q b t a t( ) ( , ) . Multiplying these quanti-

ties results in =−Q a b Q a t Q b t( , ) ( , ) ( , ) 1, implying 
=±Q a t( , ) 1. If =Q a t( , ) 1, then − = −a t b t 

so =a b, which is a contradiction. Hence, 
=−Q a t( , ) 1 so that − − = −a t b t( )  or, equiva-

lently, = +t a b2 . 
Let =− + +g x x a b( ) .1  Check that g1  

swaps a and b and fixes = +t a b( ) / 2. Next,  
observe that =− + + + − −g x x a b x a x b( ) ( ) ( )( )2   
swaps a and b. Moreover, ( )+ = + − −g a b a b a b( ) / 2 ( ) / 2 ( ) / 4.2

2 
( )+ = + − −g a b a b a b( ) / 2 ( ) / 2 ( ) / 4.2

2  Thus, g2 has no integer 
fixed point. 

This proposition appeared in an unpublished 
manuscript by Gerd Baron in 1991. Special 
thanks to Anthony Bevelacqua for sharing the 
result with the editor.

SUBMISSION AND CONTACT INFORMATION
The Playground features problems for stu-
dents at the undergraduate and (challeng-
ing) high school levels. Problems and solu-
tions should be submitted to MHproblems@
maa.org and MHsolutions@maa.org, respec-
tively (PDF format preferred). Paper submis-
sions can be sent to Jeremiah Bartz, UND 
Math Dept., Witmer Hall 313, 101 Cornell 
St. Stop 8376, Grand Forks, ND 58202-8376. 
Please include your name, email address, 
and affiliation, and indicate if you are a stu-
dent. If a problem has multiple parts, solu-
tions for individual parts will be accepted. 
Unless otherwise stated, problems have been 
solved by their proposers.

The deadline for submitting solutions to 
problems in this issue is October 31, 2022.

However, these facts are immediately implied 
by the well-known binomial identities
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