MATH 145

Test 2

October 31, 2014

Name:

\qquad

- No books, notes, or calculators are allowed.
- Please show all your work. Prove all your claims.
- Choose any three problems. Please make your choice clear.

1. Prove that $1^{2014}+2^{2014}+3^{2014}$ is divisible by 7 .
2. Solve over \mathbb{R} : $\quad x^{2}+3 \leq|3 x-3|+4 x$.
3. Let $F_{0}=0, F_{1}=1, \ldots, F_{2013}$ be the first 2014 Fibonacci numbers. How many of them are divisible by 4 ?
4. We start with the set $\{1,2,3,4,5,6\}$. In each step we may either multiply any one of these numbers by 3 or add 2 to it. We may repeat this step as many times as we want. Prove that it is impossible to reach the set $\{18,27,36,54,81,108\}$.

- For extra credit: Do there exist integers m and n such that $m^{2}+20142015=n^{2}$?

