Math 145

Practice Test 3 - Solutions

1. See problem 9 in chapter 10.
2. A Hamilton path is shown:

There is no Hamilton cycle because among 9 vertices, 5 are in one set. Thereofe if a Hamilton cycle existed then at least 2 of these 5 would be consecutive in the cycle. However, they cannot be joined because since they are in one set.
3. See problem 15 in chapter 14.
4. (Suggestion: draw a picture.) Let the line have slope m, then the equation of the line is $y=m x-m+1$. The x-intercept (found by setting $y=0$ and solving for x) is $x=\frac{m-1}{m}$, and the y-intercept (found by setting $x=0$) is $y=-m+1$. Therefore the area of the triangle is

$$
A_{1}=\frac{1}{2} \cdot \frac{m-1}{m} \cdot(-m+1)=-\frac{(m-1)^{2}}{2 m}
$$

The area of the region bounded by the y-axis, the parabola, and the line is

$$
\begin{aligned}
A_{2} & =\int_{0}^{1}\left(m x-m+1-x^{2}\right) d x \\
& =\frac{m x^{2}}{2}-m x+x-\left.\frac{x^{3}}{3}\right|_{0} ^{1} \\
& =\frac{m}{2}-m+1-\frac{1}{3} \\
& =-\frac{m}{2}+\frac{2}{3} \\
& =-\frac{3 m-4}{6}
\end{aligned}
$$

Since we need $2 A_{2}=A_{1}$, we have

$$
\begin{aligned}
-\frac{3 m-4}{3} & =-\frac{(m-1)^{2}}{2 m} \\
2 m(3 m-4) & =3(m-1)^{2} \\
3 m^{2}-2 m-3 & =0 \\
m & =\frac{1 \pm \sqrt{10}}{3}
\end{aligned}
$$

Since we need the negative solution, we have $m=\frac{1-\sqrt{10}}{3}$.

- Hint: see problem 21 in chapter 10.

