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PROBLEMS AND SOLUTIONS

EDITORS

Jerzy Wojdylo
CMJ Problems
Department of Mathematics
Southeast Missouri State University
One University Plaza
Cape Girardeau,MO 63701
cmjproblems@maa.org

Charles N.Curtis
CMJ Solutions
Mathematics Department
Missouri Southern State University
3950 Newman Road
Joplin,MO 64801
cmjsolutions@maa.org

This section contains problems intended to challenge students and teachers of college mathematics.
We urge you to participate actively both by submitting solutions and by proposing problems that are
new and interesting. To promote variety, the editors welcome problem proposals that span the entire
undergraduate curriculum.

Proposed problems should be sent to Jerzy Wojdylo, either by email (preferred) as a pdf, TEX,
or Word attachment or by mail to the address provided above. Whenever possible, a proposed problem
should be accompanied by a solution, appropriate references, and any other material that would be
helpful to the editors. Proposers should submit problems only if the proposed problem is not under
consideration by another journal.

Solutions to the problems in this issue should be sent to Chip Curtis, either by email as a pdf,
TEX, or Word attachment (preferred) or by mail to the address provided above, no later than December
15, 2018.

PROBLEMS

1126. Proposed by George Stoica, Saint John, New Brunswick.

Prove that lim
x→∞

∞∏
n=1

(1 − x−n) = 1.

1127. Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary School,
Buzău, Romania.

For each positive integer n, let en =
(
1 + 1

n

)n
and lim

n→∞ en = e, Euler’s constant, and

let

sn = −2
√
n+

n∑
k=1

1√
k

and lim
n→∞ sn = s, the Ioachimescu constant. Find lim

n→∞
e− en
(sn − s)2

.

1128. Proposed by Arthur L. Holshouser, Charlotte, NC, and Benjamin G. Klein,
Davidson College, Davidson, NC.
Let a, b, c, d be positive integers such that a and b are relatively prime, similarly c
and d, and a

b < c
d . Find necessary and sufficient conditions on a, b, c, d such that if x

and y are relatively prime positive integers with a
b < x

y < c
d , then u = −dx+ cy and

v = bx− ay are relatively prime.

doi.org/10.1080/07468342.2018.1445359
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1129. Proposed by David M. Bradley, University of Maine, Orono, ME.
The natural logarithm satisfies the functional equation log(xy) = log(x) + log(y) for
positive real x and y. It also satisfies the inequality log(x) ≤ x− 1 for positive
real x. Show that these two properties characterize the natural logarithm. That is, if the
function f : R>0 → R satisfies the functional equation f (xy) = f (x) + f (y) and the
inequality f (x) ≤ x− 1 for all positive real x and y, then f (x) = log(x) for all positive
real x.

1130. Proposed by Michael Goldberg, Baltimore Polytechnic Institute, Baltimore, MD,
and Mark Kaplan, Towson University, Towson, MD.

Let T0 be an arbitrary triangle with vertices A0, B0, C0 and corresponding side lengths
a0, b0, c0. Construct triangle T1 whose vertices A1, B1,C1 are the centers of the squares
constructed on the sides A0B0, B0C0,C0A0 outside T0, respectively; call the correspond-
ing side lengths a1, b1, c1. Continue in this way to build triangles T2, T3, etc. Show that
there exists γ > 0 such that there exist finite nonzero limits

lim
n→∞

an
γ n

= lim
n→∞

bn
γ n

= lim
n→∞

cn
γ n

,

i.e., such that the sequence of triangles {Tn scaled by 1/γ n} converges to an equilateral
triangle.

SOLUTIONS

An inequality involving sums

1101. Proposed by Mehtaab Sawhney (student), University of Pennsylvania, Philadel-
phia, PA.

Suppose x1, . . . , xn and y1, . . . , ym are real numbers satisfying

n∑
i=1

xi = 0 and
m∑
j=1

y j = 0.

Show, for any real numbers a1, . . . , an and b1, . . . , bm, that

2
n∑
i=1

m∑
j=1

xiy j|ai − b j| ≥
n∑
i=1

n∑
j=1

xix j|ai − a j| +
m∑
i=1

m∑
j=1

yiy j|bi − b j|.

Solution by the proposer.

We give a solution to the following more general problem.
Given

∑n
i=1 xi =

∑m
j=1 y j = 0, show that

2
n∑
i=1

m∑
j=1

xiy j|�ai −�b j| ≥
n∑
i=1

n∑
j=1

xix j|�ai − �a j| +
m∑
i=1

m∑
j=1

yiy j|�bi −�b j|

with �ai,�b j ∈ R� and | · | being the Euclidean norm.
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Note that

E|�u|=1[�u · �v] = E|�u|=1

[
�u ·

(
�v

|�v|
)

|�v|
]

= |�v| E|�u|=1[�u · 〈1, 0, . . . , 0〉]
= C|�v|

with C being some positive constant. Therefore, the result follows if the analogous
one-dimensional inequality holds, as

1

C

⎛
⎝2

n∑
i=1

m∑
j=1

xiy j|�ai −�b j| −
n∑
i=1

n∑
j=1

xix j|�ai − �a j| −
m∑
i=1

m∑
j=1

yiy j|�bi −�b j|
⎞
⎠

= E|�u|

⎡
⎣2

n∑
i=1

m∑
j=1

xiy j|�ai · �u−�b j · �u| −
n∑
i=1

n∑
j=1

xix j|�ai · �u− �a j · �u|

−
m∑
i=1

m∑
j=1

yiy j|�bi · �u−�b j · �u|
⎤
⎦

≥ E|�u|=1[0] = 0.

Thus, it suffices to prove the original problem,

2
n∑
i=1

m∑
j=1

xiy j|ai − b j| ≥
n∑
i=1

n∑
j=1

xix j|ai − a j| +
m∑
i=1

m∑
j=1

yiy j|bi − b j|

with ai, b j being real numbers and
∑n

i=1 xi =
∑m

j=1 y j = 0. Furthermore, shifting {ai}
and {b j} by a sufficiently large positive constant, it suffices to prove this inequality
with ai, b j being positive. The key is to realize that since

∑n
i=1 xi =

∑m
j=1 y j = 0,

it follows that the desired inequality is equivalent to

2
n∑
i=1

m∑
j=1

xiy j

( |ai − b j| − ai − b j
2

)

≥
n∑
i=1

n∑
j=1

xix j

( |ai − a j| − ai − a j
2

)
+

m∑
i=1

m∑
j=1

yiy j

( |bi − b j| − bi − b j
2

)
.

However, using the identity

x+ y− |x− y|
2

= min(x, y)

with x, y ≥ 0, the rewritten inequality is equivalent upon rearranging to

n∑
i=1

n∑
j=1

xix j min(ai, a j ) +
m∑
i=1

m∑
j=1

yiy jmin(bi, b j ) ≥ 2
n∑
i=1

m∑
j=1

xiy jmin(ai, b j ).
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Define

λ[0,z](x) =
{
1 x ≤ z
0 x > z

and let f (t ) = ∑n
i=1 xiλ[0,ai](t ) and g(t ) = ∑m

j=1 y jλ[0,b j](t ). The final inequality fol-
lows as∫ ∞

0
( f (t ) − g(t ))2 dt

=
n∑
i=1

n∑
j=1

xix jmin(ai, a j ) +
m∑
i=1

m∑
j=1

yiy jmin(bi, b j ) − 2
n∑
i=1

m∑
j=1

xiy j min(ai, b j )

≥ 0.

No other solutions were received.

A binomial identity

1102. Proposed by Mehtaab Sawhney (student), University of Pennsylvania, Philadel-
phia, PA.

Prove, for all nonnegative integers n, that

n∑
k=0

(
2k

k

)
=

�n/3�∑
k=0

3n−3k

(
n− k

2k

)(
2k

k

)
.

Solution by Radouan Boukharfane, University of Poitiers, France.

We use generating functions. For |x| < 1
4 , the generating function of the left-hand

side is

f (x) =
∞∑
n=0

n∑
k=0

(
2k

k

)
xn

=
∞∑

�=0

∞∑
k=0

(
2k

k

)
x�+k

=
∞∑

�=0

x�

∞∑
k=0

(
2k

k

)
xk

= 1

1 − x
.

1√
1 − 4x

and the generating function of the right-hand side is

g(x) =
∞∑
n=0

�n/3�∑
k=0

3n−3k

(
n− k

2k

)(
2k

k

)
xn
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=
∞∑
k=0

(
2k

k

)
3−3k

∞∑
�=0

(
� + 2k

2k

)
(3x)�+3k

=
∞∑
k=0

(
2k

k

)
x3k(1 − 3x)−2k−1

= 1

1 − 3x

∞∑
k=0

(
2k

k

)(
x3

(1 − 3x)2

)

= 1

1 − 3x
.

1√
1 − 4x3

(1−3x)2

= 1

(1 − x)
√
1 − 4x

.

Also solved by Harris Kwong, St. U. New York Fredonia; Northwestern U. Math Problem Solving
Group; Ángel Plaza and Francisco Perdomo (jointly), U. Las Palmas de Gran Canaria, Spain; Rob Pratt,
Washington, DC; and the proposer.

Ideals of a polynomial ring

1103. Proposed by Greg Oman, U. of Colorado, Colorado Springs, CO.
Let R = Z[Xi | i ∈ R] be the polynomial ring over Z in uncountably many variables
indexed by the real numbers. Prove or disprove: There exists a countable collection
{In | n ∈ N} of ideals of R with the following two properties.

(1) The factor ring R/In is countable for every n ∈ N, and

(2)
⋂
n∈N

In = {0}.

Hint: Does there exist a commutative ring S with identity containing R as a subring and
a collection {In | n ∈ N} of ideals of S which satisfies (1) (with R replaced with S) and
(2)?

Solution by Souvik Dey (student), Indian Statistical Institute, Kolkata, India.

Consider the ring S = QN (the ring with respect to pointwise addition and multi-
plication of all real sequences with all terms rational). Let B ⊆ R be a set of 2ℵ0 (the
cardinality ofR) algebraically independent real numbers overQ. (This is possible since
the transcendence degree of R over Q is the cardinality of the continuum, so we can
take B to be a transcendence basis.) For each b ∈ B, choose a sequence x(b) ∈ S of ra-
tional numbers converging to b. (This is possible asQ is dense in R.) These sequences
x(b) will then be algebraically independent in S over Q, since any polynomial with ra-
tional coefficients in the x(b) converges to the corresponding polynomial in the b, and
so in particular cannot be the zero sequence because B is algebraically independent
over the rational numbers. Thus, the x(b) generate a subring of S which, since B and
R have the cardinality, is isomorphic to Z[Xi | i ∈ R] = R. Now let Jn ⊆ S be the ideal
of sequences whose nth coordinate is 0. We then have ∩n∈NJn = {0}, and S/Jn ∼= Q

is countable for all n ∈ N since Jn is the kernel of the nth coordinate projection map
S → Q. Hence, we have found our required ideals.

Also solved by the proposer.

226 C© THE MATHEMATICAL ASSOCIATION OF AMERICA



An ordered field minus transitivity

1104. Proposed by Greg Oman, University of Colorado, Colorado Springs, CO.
An ordered field consists of a field F along with a binary relation< on F which satisfies
the following.

(a) (transitivity) For any a, b, c ∈ F , if a < b and b < c, then a < c.
(b) (trichotomy) For any a, b ∈ F , exactly one of a < b, a = b, and b < a holds.
(c) For all a, b, c ∈ F , if a < b, then a+ c < b+ c.
(d) For all a, b, c ∈ F , if a < b and 0 < c, then ac < bc.

Now consider dropping the transitivity axiom; call an order < on a field F which satis-
fies (b), (c), and (d) a pseudo-order. Let p be a prime. Show that there exists a pseudo-
order on the finite field Z/〈p〉 if and only if p ≡ 3 (mod 4).

Solution by Abhay Goel, Kalamazoo College.

First, suppose F is a field with a pseudo-order <. We must have 1 > 0: More gen-
erally, we show that x2 > 0 for nonzero x ∈ F . For x < 0, adding −x gives 0 < −x
and multiplying by −x gives (0)(−x) < (−x)(−x), i.e., 0 < x2. For x > 0, multiplying
by x gives (x)(x) > (0)(x), i.e., x2 > 0. So nonzero squares are always positive and, in
particular, 1 = 12 is positive.

Now, note that if p ≡ 1 mod 4 or if p = 2, then −1 is a quadratic residue modulo
p. That is, we have some element x ∈ Fp with x2 = −1. But this contradicts the above,
since x2 = −1 must be positive, and 1 must be positive, so adding the relations−1 > 0
and 1 > 0 gives 0 > 0. This shows the necessity of p ≡ 3 mod 4.

Finally, we show sufficiency. Given p ≡ 3 mod 4, we define< on Fp as follows. For
x �= y, x < y if and only if y− x is a quadratic residue modulo p.

First, note that this satisfies trichotomy. Indeed, if x �= y, then y− x is nonzero, so
the Legendre symbol ( y−xp ) is nonzero. Furthermore,

(
x− y

p

)
=

(
(−1)(y− x)

p

)
=

(−1

p

)(
y− x

p

)
= −

(
y− x

p

)

by choice of p. So, exactly one of x− y and y− x is a quadratic residue, so that exactly
one of x < y or y < x holds.

Second, this is clearly additive. If x < y and c ∈ F is arbitrary, then x+ c < y+ c
since (y+ c) − (x+ c) = y− x is a quadratic residue by assumption.

Finally, if c > 0, then ( cp ) = 1, so

(
yc− xc

p

)
=

(
c

p

)(
y− x

p

)
= 1

shows that yc > xc as well. Therefore, it is also invariant under multiplication by pos-
itive elements, so it is indeed a pseudo-order as desired.

Also solved by Souvik Dey (student), Indian Stat. Inst., India; Robert Doucette, McNeese St. U.; Eugene
Herman, Grinnell C.; Luke Kiernan (student), U. Michigan; Missouri St. U. Problem Solving Group; Kan-
grae Park, Seoul Science H. S., South Korea; and the proposer. Three incomplete solutions were received.
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A three-variable inequality

1105. Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.
Let x, y, z be positive real numbers and k a nonnegative integer. Prove that

∑
cyclic

x2k+2 + y2k+2

z2k+1
≥ (xyz)k+1

∑
cyclic

1

x3k+2
+ 3 3

√
xyz.

Solution by Henry Ricardo, Westchester Area Math Circle.

Two applications of the AM-GM inequality yield

∑
cyclic

x2k+2 + y2k+2

z2k+1
≥ 2

∑
cyclic

(xy)k+1

z2k+1

= (xyz)k+1
∑
cyclic

1

x3k+2
+

∑
cyclic

(xy)k+1

z2k+1

≥ (xyz)k+1
∑
cyclic

1

x3k+2
+ 3 3

√
(xy)k+1(yz)k+1(zx)k+1

(xyz)2k+1

= (xyz)k+1
∑
cyclic

1

x3k+2
+ 3 3

√
xyz.

Also solved by Michel Bataille, Rouen, France; Radouan Boukharfane, U. Poitiers, France; Saumya
Dubey, Rutgers U.; James Duemmel, Bellingham, WA; Habib Far, Lone Star C. Montgomery; Dmitry Fleis-
chman, Santa Monica, CA; Eugene Herman, Grinnell C.; Younghun Jo, Seoul Science H. S., South Korea;
Harris Kwong, St. U. NewYork Fredonia;Wei-Kai Lai and JohnRisher (student), U. S. Carolina Salkehatchie;
Jun Sung Oak, Yonsei U., South Korea; SeungWon Park, Yonsei U., South Korea; Paolo Perfetti, U. Roma
Tor Vergata, Italy; Digby Smith, Mount Royal U.; Neculai Stanciu, Buzău, Romania and Titu Zvonaru,
Comăneşti, Romania; Michael Vowe, Therwil, Switzerland; and the proposer.
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