Practice Test 1

Answer the question (5 points):

- What does " a and b are relatively prime" mean?
and do any 3 of the following problems (15 points each):

1. Let $P(x, y)$ denote the proposition " $x \leq y$ " where x and y are real numbers. Determine the truth values of
(a) $\forall x P(-x, x)$,
(b) $\exists x \exists y P(x, y)$,
(c) $\forall x \exists y P(x, y)$,
(d) $\exists x \forall y P(x, y)$,
(e) $\forall x \forall y P(x, y)$.
2. Prove that for any integers n and m, if $n m+2 n+2 m$ is odd then both n and m are odd (you may only use the definitions of even and odd numbers; do not use any properties unless you prove them). Is your proof direct, by contrapositive, or by contradiction?
3 . Prove that for any natural n,

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

4. Kevin is paid every other week on Friday. Show that every year, in some month he is paid three times.

Extra credit (15 points):

- Let f be a one-to-one function from $X=\{1,2, \ldots, n\}$ onto X. Let $f^{k}=$ $\underbrace{f \circ f \circ \ldots \circ f}_{k \text { times }}$ denote the k-fold composition of f with itself. Show that for some positive integer $m, f^{m}(x)=x$ for all $x \in X$.

