
**61.

*62.

63.

64.

65.

*66.

*67,
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ses are inserted into their product. (I1lnf Use strong
induction and consider the last multiplication.)

68. Construct a tiling using L-shaped pieces of the 4 ¡ 4
chessboard with the square in the upper left corner
removed.

69. Construct a tiling using L-shaped pieces of the 8 x 8

chessboard with the square in the upper left corner
removed.

70. Prove or disprove that all chessboards of these shapes

can be completely covered using L-shaped pieces

whenever n is a positive integer.

a) 3 x2" b\ 6 x2"
c) 3" x3" d) 6" x 6"

*71". Show that a three-dimensional 2" x 2" x 2" chess-

board with one 1 x 1 x I cube missing can be com-
pletelycoveredby2x2 x 2cubeswithone I x 1x I
cube removed.
Show that aî n x n chessboard with one square re-
moved can be completely covered using L-shaped
pieces if n > 5,n is odd,atd3 [ n.

Show that a 5 x 5 chessboard with a corner square
removed can be tiled using L-shaped pieces.

Find a 5 x 5 chessboard with a square removed that
cannot be tiled using L-shaped pieces. Prove that such

a tiling does not exist for this board.
Let a be an integer and d be a positive integer. Show

that the integers q and r wiÍh a : dq I r and

0 < r < d, which were shown to exist in Exam-
ple 16, are unique.
Use the principle of mathematical induction to show

IhaI P(n) is true for n : b,b + l,b +2,..., where

å is an integer, iÎ P (b) is true and the implication
P(k) --> P(fr + 1) is true for all positive integers fr

withk > b.

Can you use the well-ordering property to prove this

statement? "Every positive integer can be described

using no more than 15 English words"?
Use the well-ordering principle to show th at if x andy
are real numbers with x < y, then there is a rational
number r with ¡ < r < y. [I1lnr; Show that there

exists a positive integer A with A . 1/(y - x). Then

show that there is a rational number r with denomi-
nator A between x and y by looking at the numbers

Lx ) + j I A,where j is a positive integer.]

Let at, az,. . . , 4,, be positive real numbers. The arith-
metic mean of these numbers is deflned by

A: (q * az+...* a,,)f n,

and the geometric mean of these numbers is deflned
by

6 : (a1a2. . .a,)t/".

Use mathematical induction to prove that A > G.

Use mathematical induction to show lhat27 divides
4n+t + 52n-t whenever n is a positive integer.
Use mathematical induction to prove Lemma 2

of Section 2.6, which states that if p is a prime
and p I apz. . .an, where ø¡ is an integer for
i : 1,2,3,..., n,then p I a¡ for some integer i.
Use inflnite descent to show that the equation 8xa +
4ya + 2za : r¿,4 has no solutions in positive integers
x,y,z,andw.
Use inflnite descent to show that there are no solu-
tions in positive integers u, x, y, and z to w2 + x2 +
y2 + z2 - 2wxyz. (Hint: Ftrst show that if this equa-

tion holds,then all of u,r,x,y,and z must be even.Then
show that all four of these integers must be divisible
by 4,by 8, and so on.)
The well-ordering property can be used to show that
there is a unique greatest common divisor of two pos-

itive integers. Let a and å be positive integers, and let
S be the set of positive integers of the form as I bt,
where s and / are integers.

a) Show that S is nonempty.
b) Use the well-ordering property to show that S has

a smallest element c.

c) Showthatif d is a common divisor of a andå,then
d is a divisor of c.

d) Showthat c I a and c I b. (Hint: First, assume that
c / a.Tlten a : ecf r,where 0 < r < c. Show
that r e ,S, contradicting the choice of c.)

e) Conclude from (c) and (d) that the greatest com-
mon divisor of ø and å exists. Finish the proof by
showing that this greatest common divisor of two
positive integers is unique.

Show that if ø t, a2, . . . , a,t are n distinct real numbers,
exaclly n - 1 multiplications are used to compute the
product of these n numbers no matter how parenthe-

*72.

73.

*74,

75.

[s 76.

**77

78.

Þ Reeursive Definitions and Structural Induction

INTRODUCTION

Sometimes it is difficultto define an object explicitly. However,itmay be easy to define this

object in terms of itself. This process is called recursion. For instance, the picture shown

in Figure 1 is produced recursively. First, an original picture is given. Then a process of
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FIGURE 1 A Recursively Defined Picfure.

l

I

I

I

i

i

I

l

successively superimposing centered smaller pictures on top of the previous pictures is
carried out.

We can use recursion to def,ne sequences, functions, and sets. In previous discussions,
we specif,ed the terms of a sequence using an explicit formula. For instance, the sequence
of powers of 2isgivenby au:2't for n:0, 1,2,.... However,thissequence can also
be defined by giving the first term of the sequence,namely, ag : 1, and a rule for finding
a term of the sequence from the previous one, namely, en*I : 2a,, lor n : 0, 1,2, . . . .
'When we deflne a sequ ençe recttrsively by specifying how terms of the sequence are found
from previous terms, we can use induction to prove rèsults about the sequence.

When we define sets recursively, we specify some initial elements in a basis step and
provide a rule for constructing new elements from those we already have in the recursive
step. To prove results about recursively defined sets we use a method called structural
induction.

RECURSIVELY DEFINED FUNCTIONS

'We use two steps to def,ne a function with the set of nonnegative integers as its domain

BASIS STEP: Specify the value of the function at zeÍo.

RECURSM STEP: Give a rule for finding its value at an integer from its values at
smaller integers.

Such a definition is called a recursive or inductive definition.

:^t'

J

3"*-
1.$
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EXAMPLE 1 Suppose that / is defined recursively by

"f 
(o) : 3,

f(n+r):2f(n)-t3.
Find /(i), f (2), f (3),and /(4).

Solution: From the recursive definition it follows that

f (r):2f (0) +3:2.3 *3:9,
f (2) :2f (I) +3:2.9 +3:2t,
f (3) : 2f (2) + 3 : 2. 2r + 3 : 45,

f (4) :2f (3) +3:2'45 -13 :93.

Many functions can be studied using their recursive definitions. The factorial function
is one such example.

EXAMPLE 2 Give an inductive definition of the factorial function F (n) : 4!

Solution: We can define the factorial function by specifying the initial value of this func-

tion,namely,F(0): l,andgivingaruleforfindingF(n*1)fromF(n).Thisisobtained
by noting that (n * 1)! is computed from n! by multiplyingby n I 1. Hence, the desired

rule is

F(n -f l) : (n + l)F(n). <

To determine a value of the factorial function, such as F(5) : 5!' from the recursive

definition found in Example 2, it is necessary to use the rule that shows how to express

F (n -f 1) in terms oT F (n) several times:

F(5) : 5F(4) :5 .4F(3) :5 .4.3F(2) :5 .4.3 .zF(l)

: 5' 4' 3' 2' 1' F'(0) : 5' 4'3'2' l' | : 120.

Once F (0) is the only value of the function that occurs, no more reductions are necessary.

The only thing teft to do is to insert the value of F(0) into the formula.
Recursively defined functions are well def,ned. This is a consequence of the princi-

ple of mathematical induction. (See Exercise 56 at the end of this section.) Additional
examples of recursive definitions are given in the following examples.

EXAMPLE 3 Give a recursive def,nition of an ,where a is a nonzero real number and n is a nonnegatlve

integer.

Solution: The recursive definition contains two parts. First a0 is specified, n amely,ao = l.
Then the rule for finding anll from e",namely, Q'tl : a' Qn,for n : 0, I, 2,3, . . ., is

given. These two equations uniquely defrne an for all nonnegative integers n. <

EXAMPLE 4 Give a recursive definition of

.,-::.Ext¡¡..a':: :: ;'1

li :E)¡ã|!rllos.:". :.|

L

n

D"o
ft:0
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Solution: The f,rst part of the recursive definition is

0

Don: oo'
fr:0

The second part is

n+1

'r: (ä'n) +o'*'D
fr:0

In some recursive definitions of functions, the values of the function at the first k
positive integers are specified, and a rule is given for determining the value of the func-
tion at larger integers from its values at some or all of the preceding ft integers. That
such definitions produce well-def,ned functions follows from strong induction (ee Exer-
cise 57 at the end of this section).

DEFINITION 1 T)ne Fibonacci numbers, Ío, fi, fz,
1, and

. , are defined by the equations /6 : 0, -fr =

- , :l

i: : rLinks.':..::,:.:
fn: fn-t * fr-z

forn:2,3,4,....

EXAMPLE 5 Find the Fibonacci numbers fz, fz, fq, f5,and f6

Solution: Since the first part of the definition states that fs: 0 and fi : I,it follows
from the second part of the definition that

fz:filfo:1+0:1,
h:[zlft:l*l:2,
lq:lzlfz:2+l:3,
fs: fq* ft:3i2:5,
fø:fs*fq:5+3:8. i

I

'We can use the recursive definition of the Fibonacci numbers to prove many proper-
ties of these numbers. We give one such property in Example 6.

FIBONACCI (1170-1250) Fibonacci (short forfllus Bonacci, or "son of Bonacci") was also known
as Leonardo of Pisa. He was born in the Italian commercial center of Pisa. Fibonacci was a merchant
who traveled extensively throughout the Mideast, where he came into contact with Arabian mathematics.
In his book Liber Abaci, Fibonacci introduced the European world to Arabic notation for numerals and
algorithms for arithmetic. It was in this book that his famous rabbit problem (described in Section 6.1)
appeared. Fibonacci also wrote books on geometry and trigonometry and on Diophantine equations,
which involve finding integer solutions to equations.
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EXAMPLE 6 Show that whenever n >- 3, f, > an-2,where cY : (1 + J' 12'

Solution: We can use strong induction to prove this inequality'Let P (n) be the statement
"n""r";;-; 

w" *u", to shãw fhar. p (n) is true whenever n is an integer greater than or. ,. . ,j ...,-::

..;:lExtúâ -- . ,

'l 
jÈriämnilps.

'.:.:=:.. 
: : : :.: :'.:.. equal to 3.

BAS/S STEP: First,note that

a <2: .Í'2, a2:(3+JÐ12<3: f+,

so that P(3) and P(4) are true'

INDucrIvE srnp: Assume that p ( j ) is true, namely, rhaT f ¡ >, 
,ui 

-2 ,for all integers

lwith3 < i < k,where k> 4'Wemustshowthat P(k+ 1)istrue'thatis'that
tro"*',,"r-o'-tl 

si""""it"solutilon of x2 -x-l:0(asthequadraticformulashows)'
it follo*r thal a2 : a -l I . Therefore,

o¿k-: : a2 . ak-3 - (a * I)e¿k-3 : a .otk-3 + | 'ak-3 - ok-" * ak-3 '

By the inductive hypothesis, if k > 4,it follows that

ft -t r ok-3 , ft t uk-z '

Therefore, we have

fwt : ft * Ít -t , ak-2 * uk-z : o¿k-r '

It follows thaf P (k * 1) is true' This completes the proof' <

Retnørh:Theinductivestepshowsthatwheneverk>4'P(k+1)followsfromthe
assumption that P(i) is true fãr 3 < i < k' Hence' the inductive step does r¿ol show that

Otrl -* P(4). Therefore, we had to show that P(4) is true separately'

WecannowshowthattheEuclideanalgorithmuseso(logb)divisionstof,ndthe
greatest common divisor of the positive integers a and b'whete a - b'

THEOREM 1 LAMÉ'STHEOREM læt ø and b be positive integers with o. ì b.T"" ttre numberfl

of divisions used by the Euclidean algorithm tá nno"gc¿(a, ¿) is less than or eoual t$
five times the number of decimal digits in å' 

.il

GABRIEL LAMÉ (1795-1870) Gabriel Lamé entered the École Polytechnique in 1813, graduating

in 1"817. He continued his education at the École des Mines, graduating in 1820.
of HighwaYs and

In 1820 Lamé went to Russia, where he was aPPointed director of the Schools

did he teach, but he also Planned roads and bridges while in
Tlansportation in St. Petersburg. Not only

engineering firm. However, he soon left
Russia. He returned to Paris in 1832, where he helped found an

1844. While holding
the firm, accePting the chair of PhYsics at the École PolYtechnique, which he held until

as chief engineer of

this position, he was active outside academia as an engineering consultant, serving

mines and ParticiPating in the building of railwaYs'
and thermodYnamics His

on number thåorY includesLamé contributed original work to number theorY, applied mathematics,

:t-rr,iir*- " '' t 
"'t-'

best-known work involves the introduction of curvilinear coordinates. His work
for the number of divisions

proving Fermat's LastTheorem for n 7, as well as providing the uPPer bound

used by the Euclidean algorithm given in this text'
mathematicians of all time, Lamé was the foremost

In the opinion of Gauss, one of the most imPortant

French mathematician of his time' However,French mathematicians

French scientists considered him too theoretical.

considered him too practical,whergas

t
t
I
I
i
I
,'
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Proof: Recall that when the Euclidean algorithm is applied to f,nd gcd(a, b) with a > b,
this sequence of equations (where a - r0 aîd b : rt) is obtained.

ro:rtqtlrz 0<12<11

11:r2Q2l4 0<ry<12

fn-2:rn-1en-1lrn 0 a rr 1 fn_1

ïn-1: fnQn.

Heren divisions have beenused to frndrn - gcd(a, å). Note thatthe qu oÍientsq1, q2,
are all at least 1. Moreover, e, > 2,since r, I tn_1.This implies that

rn > l: f2,

tn-r)2r,>2f2- f3,

rn-2 2 rn-t I r, > fz I fz: fq,

, Qn-l

12 > rz * rq > fr-t I fn-2: fr,
b : rt > rzl rz > f, i fn-t : Ín+1.

It follows fhat í1 n divisions are used by the Euclidean algorithm to find gcd(a, b) wiTh
a >. b,fhenb > fn+t. FromExample6weknowthat fn+1 > q"-t for n > 2,whereu:
Q+.fÐ/2.Tllerefore,itfollows thafb> ar-l.Furthermore,sincelogl6ø -O.Z0g> l/5,
we see that

logr¡b > (n - l) log,o o¿ > (n - 1)/5.

Hence, n - I < 5 . log1sä. Now suppose that å has fr decimal digits. Then b < l}k and
logrcb < ft. Itfollowsthatz -7 < sk,andsinceftisaninteger,itfollows tharn < 5k.This
finishes the proof. <

sincethenumberof decimaldigitsinå,whichequals llog16ål * l,islessthanorequal
to logls å + 1, Theorem 1 tells us that the number of divisions required to find gcd(a, b)
with ø > å is less than or equal to 5(lo916 b + 1). Since 5(log1¡å f 1) is O(logb),we see
that o(Iogb) divisions are used by the Euclidean algorithm to find gcd(a,b) whenever
a:.b.

RECURSTVELY DEFINED SETS AND STRUCTURES

We have explored how functions can be defined recursively. We now turn our attention
to how sets can be defined recursively. Just as in the recursive def,nition of functions,
recursive definitions of sets have two parts, a basis step and a recursive step. In the basis
step, an initial collection of elements is specified. In the recursive step, rules for forming
new elements in the set from those already known to be in the set are provided. Recursive

'

l

l

l

l

l
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EXAMPLE 7

definitions may also include an exclusion rule, which specifies that a recursively deflned

setcontainsrrotfrirrgotherthanthoseelementsspecifiedinthebasissteporgeneratedby
applications of the recursive step' In our discussions' we will always tacitly assume th¿1

the exclusion rule holds and no Llement belongs to a recursively defrned set unless it is

in the initial collection specified in the basis step or can be generated.using the recursive

step one of more times. Later we will see how we can use a technique known as structural

induction to prove results about recursively defined sets'

Examples7,8,10,and1].illustratetherecursivedefinitionofsets.Ineachexample,
we show those elements generated by the first few applications of the recursive step'

Consider the subset S of the set of integers defined by

BAS/SS?EP: 3 e S.

RECURSIVE STEP: If x e S and v e S,thenx * v e S'

The new elements found to be in s are 3 by the basis step, 3 * 3 : 6 at the first

application of the recursive step, 3 + 6 : 6 + 3 : 9 and 6 * 6 = 12 af fhe second

appticatlon of the recursive step, and so on' <

Recursive definitions play an important role in the study of strings. (See Chapter

11 for an introduction to the t'heory oi formal languages, for example.) Recall from sec-

tion3.Zthat a string over an alphatet E is a finite sequence of symbols from Ð. we can

define E*, the set of strings ovãr X, recursively' as Definition 2 shows'

BrS0

.t .:
., ..E'xtr.â', r'
I Ê:táaitds

DEFINITION 2

EXAMPLE 8

The set Ð* of strings over the alphabet E can be deflned recursively by

BAS¡S STEP: À e E* (where ). is the empty string containing no symbols)'

RECURSNE STEP: If ur e E* andx € E'then u)x eÐ*'

The basis step of the recursive defrnition of strings says that the empty string belongs to

E*. The recursive step states that new strings arã produced by adding a symbol from E

to the end of strings in E*. At each application oi the recursive step, strings containing

one additional symbol are generated'

IfE:t0,1),thestringsfoundtobeinx*,thesetofallbitstrings'areÀ'specifiedto
be in x* in the basis ,äp, O and 1 formed during the first application of the recursive

step,00, 01, 10, and 11 formed during the seconiapplication àf th" .""uttive step, and

so on.

Recursive definitions can be used to define operations or fu¡ctions on the elements

of recursively defined sets. This is illustrated in Dàfinition 3 of the concatenation of two

strings and Ëxample 9 concerning the length of a string'

1
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DEFINITION 3 Two strings can be combined via the operation of concatenation. Let E be a set of
symbols and l* the set of strings formed from symbols in Ð. we can define the
concatenation of two strings, denoted by ., recursively as follows.

BAS/S STEP: If u e E*, then w . )" : u, where À is the empty string.

RECURSM STEP: If u.r1 e Ð* and w2 € E* and.r € Ð, then u1 . (w2x) :
(wt .wz)x.

The concatenation of the strings ?.u1 and ru2 is often written ãs u)1u2 rather than wt .u2.
By repeated application of the recursive definition, it follows that the concatenation of
two strings ?.ui and u2 consists of the symbols in u1 followed by the symbols in u;2. For in-
stance, the concatenation of wl : abre and w2 : cadabra is w1w2 : abracadabra.

EXAMPLE I Length of a String Give a recursive definition of I (w) , the length of the string u

Solution: The length of a string can be def,ned by

/(À) : g'

l(wx) : l(w) + I if w e E* andr e t.

Another important use of recursive definitions is to define well-formed formulae of
various types. This is illustrated in Examples 10 and 11.

EXAMPLE 10 Well-Formed Formulae for Compound Propositions We can define the set of well-
formed formulae for compound propositions involving T, F, propositional variables, and
operators from the set {-, A. V, -+, <+}.

BASIS STEP: T, F, and p, where p is a propositional variable, are well-formed
formulae.

RECURSM STEP: If E and F are well-formed formulae, then (- E), (E ¡ p), (E v F),
(E --> F),and (E <> F) are well-formed formulae.

For example, by the basis step we know that T, F , p , and q are well-formed formulae,
where p and q arc propositional variables. From an initial application of the recursive
step, we know that (p v q),(p -+ F), (F -+ 4), and (ø n F) are well-formed formulae. A
second application of the recursive step shows that ((p v q) --> (q A F)), (ø v (p v q)),
and ((p -+ F) -+ T) are well-formed formulae. <

EXAMPLE 11 Well-Formed Formulae of Operators and Operands We can def,ne the set of well-
formed formulae consisting of variables, numerals, and operators from the set {+, -, x,
/, f ) (where x denotes multiplication and f denotes exponentiation) recursively.
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DEFINITION 4

Basis step a

Step 1

Step 2

FIGURE 2 Building UP RootedTlees.

BAsIsSTEP:xisawell-folmedformulaifxisanumeralorvariable.

RECURSIVE STEP: If F and G are well-fofmed formulae, then (F + G)' (F - G),

(F x G), (F I G),and (F f G) are well-formed formulae'

Forexample,bythebasisstepweseethatx'y'}'and3arewell-formedformulae(as
is any variable or numeral). weliformed.for^mulae generated by applying the recursive

stepänceinclude(x*3),i:+v), (x-v)'(3-0)'(xx3)'(3xy)' (3lo)'(xlv)'(31'r)'

urrå (O t 3). Applying tná ,"".rtriu" step iwice shows that formulae such as ((¡ + 3) + :)

ur¿ i" - A - ili are well-formed formulae. [Note that (3/0) is a well-formed formula

since we are concerned only with syntax matters here'] <

we will study trees extensively in chapter 9. A tree is a special type of a graph; ¿

graphismadeupofverticesandedgesconnectingsomepairsofvertices.Wewillstudy
ãræn* in Chaptãr 8. V/e will briefly introduce them here to illustrate how they can be

defined recursivelY.

Thesetofrootedtrees,wherearootedtreeconsistsofasetofverticescontaining
adistinguishedvertexcalledtheroot,andedgesconnectingthesevertices'canbe
defined recursivelY bY these stePs:

BAS/S STEP: A single vertex r is a rooted tree'

RECURSM STEP: Suppose that ft, T2, ' ' ' , Tn aÍe rooted trees with roots

tr, 12, .. . , rn, respectiu"ty. fn"n the graph formed by starting with a root r' which

is not in any of the rooted trees Tr, Tz, ,-. . , Tn,and adding an edge from r to each

of the verticesrt'12' . . . ,rn, is also a rooted tree'

In Figure 2 we illustrate some of the rooted trees formed starting with the basis step and

applyingtherecursivesteponetimeandtwo.times'Notethatinfinitelymanyrootedtrees
uiå flt-"d at each application of the recursive definition'

Rootedtreesareaspecialtypeofbinarytrees.lüewillproviderecursivedefinitionsof
two types of binary tree,, t.,tt ui*,y trees and extended binary trees' In the recursive Step

IAA,A\



t-52

G),

(as

sive
'r),
-3)
rula

h;a
udy
rbe

and

.rees

ns of
step

ûÞ

.s

h
h

3-þr
3.4 Recursive Definitions and Structural Induction 265

of the def,nition of each type of binary tree, two binary trees are combined to form a new
tree with one of these trees designated the left subtree and the other the right subtree. In
extended binary trees, the left subtree or the right subtree can be empty, but in full binary
trees this is not possible. Binary trees are one of the most important types of structures in
computer science. In Chapter 9 we will see how they can be used in searching and sorting
algorithms, in algorithms for compressing data, and in many other applications. we f,rst
define extended binary trees.

DEFINITION 5 The set of extended binary trees car, be defined recursively by these steps:

BAS/S STEP: The empty set is an extended binary tree.

RECURSIVE srEP: If z1 and þ are extended binary trees, there is an extended
binary tree, denoted by T1 .T2,consisting of a root r together with edges connecting
the root to each of the roots of the left subtree Z1 and the right subtree 12 when
these trees are nonempty.

Figure 3 shows how extended binary trees are built up by applying the recursive step from
one to three times.

'We now show how to def,ne the set of full binary trees. Note that the difference
between this recursive def,nition and that of extended binary trees lies entirely in the
basis step.

Basis step þ

Step 1

Step 2 A/\
Step 3

/ O \/X/X,ôA
AGURE 3 Building Up Exfended Binary Thees.
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Basis step a

Step 1

Step 2

FIGURE 4 Building Up Futt BinaryTrees'

DEFINITION 6 The set of full binary trees can be def,ned recursively by these steps:

BAS/S STEP: There is a futl binary tree consisting only of a single vertex r'

RECURSM STEP: If Zr and z2 are full binary trees, there is a full binary tree'

denoted by ?'r ' 22, consisting of a root r together with edges connecting the root

to each of the roots of the left subtree ?F1 and the right subtree 12'

!

:

ì

:

1

Figure 4 shows how full binary trees are built up by applying the recursive step one and

two times.

STRUCTURAL INDUCTION

To prove results about recursively defined sets we generally use some form of mathemati-

cal induction. Example 12 illustrates the connectiÃ between recursively defined sets and

mathematical induction.

EXAMPLE 12 Show that the set S defined in Example 7 is the set of all positive integers that are mul-

tiples of 3.

Solution: Let A bethe set of all positive integers divisible by 3. To prov" t1tu1 ¿ : S'

we must show that A is a subset àt S an¿ ttrai S is a subset of A' To prove that A. is a

subset of s, we must show that every positive integer divisible by 3 is in s' we will use

mathematical induction to prove this'

Let p (n) be the statement thaÏ 3n belongs to s. The basis step holds since by the

first part of the recursive definition of s,3 . 1 - 3 is in s. To establish the inductive step'

assume that P (k) is true, namely, fbaf 3k is in s. Since 3k is in s and since 3 is in s' it

follows from the second part of the recursive definition of S that 3k + 3 : 3(k * 1) is

also in S.

To prove that s is a subset of A, we use the recursive definition of s' First, the basts

step of the def,nition ,fr"in", that 3 is in s. Since 3 : 3 .1, all elements specified to be

Li

I

I
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in S in this step are divisible by 3. To f,nish the proof, we must show that all integers in
S generated using the second part of the recursive definition are in A. This consists of
showing that ¡ f y is in A whenever x and y are elements of S also assumed to be in A.
Now if x and y are both in A,itfollows that 3 | x and 3 I y. ByTheorem 1 of Section
2.4, it follows that 3 | x + y,completing the proof. <

In Example 12 we used mathematical induction over the set of positive integers and
a recursive definition to prove a result about a recursively defined set. However, instead
of using mathematical induction directly to prove results about recursively defined sets,

we can use a more convenient form of induction known as structural induction. A proof
by structural induction consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specif,ed in the basis step of
the recursive def,nition to be in the set.

RECURSM STEP: Show that if the statement is true for each of the elements used to
construct new elements in the recursive step of the definition, the result holds for these
new elements.

The validity of structural induction follows from the principle of mathematical in-
duction for the nonnegative integers. To see this, let P(n) sTafe that the claim is true for
all elements of the set that are generated by n or fewer applications of the rules in the
recursive step of a recursive definition. We will have established that the principle of
mathematical induction implies the principle of structural induction if we can show that
P(n) is true whenever n is a positive integer. In the basis step of a proof by structural
induction we show that P(0) is true. That is, we show that the result is true of all ele-
ments specified to be in the set in the basis step of the definition. A consequence of the
inductive step is that if we assume P (k) is true, it follows fhat P (k f I ) is true. 'When we
have completed a proof using structural induction, we have shown that P(0) is true and
that P(fr) implies P (k + l). By mathematical induction it follows that P (n) is true for all
nonnegative integers ¡¿. This also shows that the result is true for all elements generated
by the recursive def,nition, and shows that structural induction is a valid proof technique.

EXAMPLES OF PROOFS USING STRUCTURAL INDUCTION To use struc-
tural induction to prove a result about the set of well-formed expressions def,ned in
Example 10, we need to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for T, F, and p whenever p is a propositional
variable.

RECURSM STEP: Show that if the result is true for the compound propositions p
and q ,it is also true for (-p;, (p v q) , (p n q) , (p * q), and (p <> q) .

Example 13 illustrates how we can prove results about well-formed formulae using

structural induction.

EXAMPLE I"3 Show that every well-formed formula for compound propositions, as defined in Exam-
ple 10, contains an equal number of left and right parentheses. <

Proof:

BASIS STEP: Each of the formulae T, F ,and p contains no parentheses, so clearly they
contain an equal number of left and right parentheses.

l

I
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RECURSM STEP: Assume p and q are well-formed formulae each containing ¿n
equal number of left and right parentheses. That is, if lo and ln are the number of left
parentheses in p and 4, respectively, and r,, and rq are fhe number of right parentheses

in p and 4, respectively, then lp : rp and lo - rn. To complete the inductive step, çs
need to show that each of (-p), (p v q), (p 

^ 
q), (p -+ 4), and (p <> q) also contains

an equal number of left and right parentheses. The number of left parentheses in the
first of these compound propositions equals /r, + 1 and in each of the other compound

propositions equals I p + lq + 1. Similarly, the number of right parentheses in the f,rst of
these compound propositions equals r o * I and in each of the other compound proposi-

tions equals rolrn f l. Since lp : rp andln : rn,it follows that each of these compound

expressions contains the same number of left and right parentheses. This completes the
inductive proof. <

Suppose thaf P(w) is a propositional function over the set of strings u € t*. To
use structural induction to prove that P(u) holds for all strings u € t*,we need to
complete both a basis step and a recursive step. These steps are:

BASIS STEP: Show that P(À) is true.

RECURSM STEP: Assume that P (w) is true, where tu e E*. Show that if x e X,
then P(u.rx) must also be true.

Example 14 illustrates how structural induction can be used in proofs about strings.

EXAMPLE 14 Use structural induction to prove thaf l(xy) : l(x) * /(y), where r and y belong to X*,
the set of strings over the alphabet X.

Solution: \üe will base our proof on the recursive definition of the set X* given in Defini-
tion 2 and the definition of the length of a string in Example 9.Let P (y) be the statement

thall(xy) : l(x) + l(y) whenever r belongs to X*.

BASIS STEP: To complete the basis step, we must show that P(À) is true. That is, we

mustshow thatl(x\):l(x) +/(À)forallx e X*.Since l(x),):l(x): /(x) +0 =
l(x) + /(À) for every string x, it follows that P(À) is true.

RECURSM STEP: To complete the inductive step, we assume that P(y) is true and

show that this implies that P(ya) is true whenever a e E. What we need to show is

thatl(xya) : l(x) 1- l(ya) for every a € >. To show this, note that by the recursive

definition of l(w) (given in Example 9), we have l(xya) : l(xy) f 1 and l(ya) =
l(y) + 1. And, by the inductive hypothesis, l(xy) : l(x) + /(y). We conclude that

l(xya) : l(x) + l(y) -l- 1 : l(x) + l(ya). <

We can prove results about trees or special classes of trees using structural induction.
For example, to prove a result about full binary trees using structural induction we need

to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for the tree consisting of a single vertex.

RECURSM STEP: Show that if the result is true for the trees Z1 and T2,fhenit is true

for tree Tt ' Tz consisting of a root r, which has Z1 as its left subtree and T2 as its right
subtree.

Before we provide an example showing how structural induction can be used to prove

a result about full binary trees, we need some definitions. We will recursively define the
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height h(T) and the number of vertices z (Z) of a full binary tree T . We begin by defining
the height of a full binary tree.

We define the height h(T) of a full binary tree 7 recursively.

BAS/S STEP: The height of the full binary tree I consisting of only a root r is

h(T) : o.

RECURSM STEP: If Zr and Zz are full binary trees, then the full binary tree
T : Tt. Zz has height h(T) : I * max(/¿(Zr), h(Tù).

If we let n(Z) denote the number of vertices in a full binary tree, we observe that n(T)
satisfies the following recursive formula:

BASIS STEP: The number of vertices n(T) of the full binary tree 7 consisting of only
a root r is n(Z) : l.
RECURSM STEP: If Zl and T2 are full binary trees, then the number of vertices of
the full binary tree T : Tt . Tzis n(Z) : 1 + n(Tt) l- n(Tù.
'We now show how structural induction can be used to prove a result about full binary
trees.

THEOREM 2 If I is a full binary tree T,then n(Z) < 2h(r)+t - |

Proof: We prove this inequality using structural induction.

BAS/S STEP: For the full binary tree consisting of just the root r the result is true since
n(T) : I and h(T) : 0,so that"n(T) : 1 I 20+1 - I : l.
INDUCTIVE STEP: For the inductive hypothesis we assume thaf n(Tù < 2h(rt)+1 - I
atd n(72) < Zh(rù+t - 1 whenever fi and T2 are full binary trees. By the recursive
formulae for n(T) and h(T) we have n(T) : I i n(71) -l n(T) and h(T) : 1 *
max(h(T), hQù).

\üe find that

n(T) : I -f n(Tt) -f n(T) by the recursive formula for n(T)

I 1 + (2hQ)+1 - 1) ¡ 12n(rù+t - l) by rhe inducrive hyporhesis

: 2 . max(2h(Tt)+t ,2hQù+1) - I since the sum of two terms is at most
2 times the larger

- 2 . 2max(h(ry),h(r))+t _ 1

¡ ¡h(T\: ¿ . z"\' / - | by the recursive definition of h(T)

- thtT\*l _ 1t.

This completes the inductive step. <

GENERALTZED INDUCTION
'We can extend mathematical induction to prove results about other sets that have the
well-ordering property besides the set of integers. Although we will discuss this concept
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EXAMPLE I"5

in detail in Section 7.6, we provide an example here to illustrate the usefulness of such ¿q

approach.
As an example, note that we can def,ne an ordering on N x N, the ordered pairs s1

nonnegative integers, by specifying that (x1, y1 ) is less than or equal to (xz, yù if either

x1 < i2,or xt : N.2and y1 < y2; this is called the lexicographic ordering'The set N x N
*itn tfrlr ordering has the property that every subset of N x N has a least element (see

Supplementary Exercise 47 in Chapter 7). This implies that we can recursively define tt¡s

t"im" a-,r,*ith * e N and r? € N, and prove results about them using a variant of

mathematical induction, as illustrated in Example 15'

Suppose lhaT a*,, is defined recursively for (m, n) e N x N by 4o,o : 0 and

3r5B

a*-t,n*7 lfn:0andm>0
am.n-r+n ifn>0.

Show that ant,n : m * n(n + I)12 for all (m,n) e N x N, that is, for all pairs of

nonnegative integers.

,solution: We can prove thaf a*,, - m * n(n + l) 12 using a generalized version of math-

ematical induction. The basis step requires that we show that this formula is valid when

(m, n) : (0, 0). The induction step requires that we show that if the formula holds for

itt puitr smaller than (m, n) in the lexicographic ordering of N x N, then it also holds

for (m,n).

BASIS STEP: Let (m, n) : (0,0). Then by the basis case of the recursive definition

of e*,, we have ao,o:0. Furthermore, when m:n:0' m*n(nll)|2=
0 + (0 . l) 12 :0. This completes the basis step.

INDUCTM STEP: Suppose That Q*,,n' : mt I n'(n' l 1)/2 whenever (m' , n') is

less than (m, n) in the lexicographic ordering of N x N. By the recursive definition, if

z¿ :0,then em,tz: am-r,n* l.Because (*-l,n) issmaller than(m,n),the induction

hypothesis tells us lhat a)4,,, : m - | * n(n + l) l2,so that am,n : m - | I n(n *
ú)z + I : m + n(n + D fi, giving us the desired equality. Now suppose thaf n > 0,

so cLm,n : ant,r-r * ¡2. Since (*,, - 1) is smaller than (m, n),fhe induction hypothesis

tellsus ïhata*,,-1 : m I (n - I)n/2,soam,n - ml (n - I)nl2*n:m+ (n2 -
n * 2n) 12 : * + n(n * l) l2.This finishes the inductive step' <

As mentioned, we will justify this proof technique in Section 7'6'

Am,n: I
I

ll

tl

I
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Exercises
1. Find f (1), f (2), /(3), and f (Ð if f (n) is deflned re-

cursively by 
"f 

(0) : I and lor n :0' 1,2, . . .

a) f(n+1): f(n)+2.
b) f (" + t) :3f (n).

c) f (ni_1):2tt').
d) f("+ 1) : f(n)' + f(n) + t.

2. Find f(1),f(2),f(3),f(4),and f(s)If f(n) isdefined

recursively by 
"f 

(0) : 3 and for n :0,1'2' . . '

a) f (n + 1): -2f (n).

b\ f(" + 1) : 3f(n) +t '

cl f@+ 1) : f(n)2 - 2f(n) - 2.

d) f("+1):3fdù/3'
3. Find f(2), f(3), f(4),arrd f(Ð Ï f is defined recur-

sively by /(0) : -1, "f 
(1) :2 andfor n :1,2' " '

a) f(n+ 1) : f@) +3f(n - r).
b\ .f (n+ 1) : f (n)z f (n - r).
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a)l (0) :0, f(n):2f(n -2)for n > I
(0) = 1, f(n) : f(n - l)- 1 forn à 1

(0) : 2,"f(1) : 3, f (n) : f (n - 1) - 7 lor n > 2
(0) : 1,,f(1) : 2, f(n) :2f(n -2) lor n > 2
(0) : 1, f(n) : 3f(n - 1) if n is odd andn > I

and f(n) :9f(n - 2) ifn is even andn > 2

6. Dete¡mine whether each of these proposed defini-

tions is a valid recursive definition of a function /
from the set of nonnegative integers to the set of in-
tegers. If / is well deflned, fìnd a formula for f (n)

when n is a nonnegative integer and prove that your
formula is valid.

a) /(0) : r, f(n) : -f(n - 1)for n > 1

b) /(0) : r, f(1) : 0, f(2) : 2, f(n) : 2f (n - 3)

lorn>3
c) "f(0) 

: 0, "f(1) 
: t, f(n) :2f(n * t) lor n > 2

d) /(0) : 0,"f(1) : 1, f(n) :2f(n* l) forn > 1

e) "f(0):2,f(n): f(n- 1)if nisoddand¡z > 1

andf(n):2f(n-2)ifn>2
7. Give a recursive definition of the sequence {a,,},

n:1,2,3,...if
a') a,, - 6n. b') a, - 2n * 1.

c) c,, = 1g'. d) a,, :5.
8. Give a recursive definition of the sequence {ø,,},

n = 1,2,3,... if
ã)a,,:4n-2. b) a,:1+(-1),.
c) a,, : n(n t 1). d) a,, - n2.

9. Let F be the function such that F(n) is the sum of the
frrst n positive integers. Give a recursive deflnition of
F (n).

10. Give a recursive deflnition of S,,,(n), the sum of the

_ integer rn and the nonnegative integer n.
1L. Give a recursive definitiòn of P,,,(n),the product of

the integer m and the nonnegative integer n.
In Exercises 12-19 f,, is the n th Fibonacci number.

12. Prove that fl + f: + . + f,?: fuf,+twhenevern
ts a positive integer.
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13. Prove thal fi I h 1'.' I fz,-t : /2,, whenevern is
a positive integer.

*L4. Show thaT f,,¡yf,,-1 - f,? : (-l)" whenever n is a

positive integer.
*15. Show lhat fsfi -l J\fzI...l fz,,tfz,: f],,whet-

ever n is a positive integer.
*16. Show that /0 - fi I f2 fzu-t I fzu : fz,-t - 1

whenever n is a positive integer.
17. Determine the number of divisions used by the Eu-

clidean algorithm to find the greatest common divi-
sor of the Fibonacci numbers /, and J,11 where l is a

nonnegative integer. Verify your answer using math-
ematical induction.

18. Let

A:

Show that

o' : I 
f'"*' !' II J, Í, tl

whenever n is a positive ihteger.
19. By taking determinants of both sides of the equation

in Exercise L8, prove the identity given in Exercise
14. (This exercise depends on the notion of the deter-
minant of a2x 2matrix.)

*20. Give a recursive deflnition of the functions max and
minsothatmax(a1, a2, ..., a,)andmin(41, az, ..., a,)
are the maximum and minimum of the n numbers
at, a2, .. ., 4,,, feSpeCtiVely.

*21. Let at, az . . ., a,,, aîd b t, bz, . . ., b,, be real numbers.
Use the recursive definitions that you gave in Exer-
cise 20 to prove these.

a) max(-41, -a2,..., -a,) : *min(41, az,...,au)
b) max(41 * bt, az * b2,..., a, + bu)

< max(a¡, a2, ..., a,) I max(bt, bz, ..., b")
c) min(ar Ib¡,a2 1b2,...,a, lb,)

> min(a1, d2,..., a,,) ! mtn(by, b2,..., b,)

22. Showthattheset S definedby 1 e S ands +/ €,S
whenever s € ,S and / € ,S is the set of positive inte-
gers.

23. Give a recursive definition of the set of positive inte-
gers that are multiples of 5.

24. Give a recursive definition of

a) the set of odd positive integers.
b) the set of positive integer powers of 3.

c) the set of polynomials with integer coefflcients.

25. Give a recursive definition of

a) the set of even integers.
b) the set of positive integers congruent to 2 mod-

ulo 3.

c) the set of positive integers not divisible by 5.

26. Let S be the subset of the set of ordered pairs of in-
tegers defined recursively by
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cl lØ + 1t :3fØt2 .- 4f(n - lt2.

il'Itr+D=IØ-t)/f(n)'
¡ Fincl f l2), f ß)' f (4),and f (5) if f is defined recur-
"' ,iu.ly by /{0) : [(l\: I and for n : l'2" "

al f1t ¡ l): f(nl - fØ - l).

bù fØ + t): f(ntfØ - t).

"í 
"rr, ¡ |t: f Ø)2 -l f tn - lt3.

dù l<tt ¡ t): ftn)/ftu - t).

(. Determine whether each of these proposed defini-

tions is a valid recursive definition of a function /
from the set of nonnegative integers to the set of in-

resers. If / is well defined, flnd a formula fot f (n)

*ñ"n n is a nonnegative integer and prove that your

formula is valid'
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Basis step: (0, 0) e S.

Recursiue step: If (a, b) e S, then (a -l 2, b * 3) e S

and (a * 3,b +2) e S.

a) List the elements of S produced by the f,rst five
applications of the recursive deflnition.

b) Use strong induction on the number of applica-
tions ofthe recursive step ofthe deflnition to show
fhat5la *åwhen (a,b) e S.

c) Use structural induction to show that 5laIb
when (a, å) e S.

27. Let S be the subset of the set of ordered pairs of in-
tegers defined recursively by

Basis step: (0, 0) e S.

Recursiue step: If (a,b) e S, then (a,b -l l) e S,

(a * I,b* 1) e S,and (a * 2,b + l) e S.

a) List the elements of ,S produced by the flrst four
applications of the recursive definition.

b) Use strong induction on the number of applica-
tions ofthe recursive step ofthe definition to show
fhat a < 2b whenever (a, b) e S.

c) Use structural induction to show that a < 2b

whenever (a,b) e S.

28. Give a recursive definition of each of these sets of or-
dered pairs of positive integers. (H int: Plot fhe points
in the set in the plane and look for lines containing
points in the set.)

a) S : {(a,b)la € Z+,b e Z+, and ct lå is odd}
b) S : {(a,b)la € Z+,b e Z+, and alb}
c) S : {(a,b)la Ç Z+,b e Z+, and3la -l b}

29. Gwe a recursive def,nition of each of these sets of or-
dered pairs of positive integers. Use structural induc-
tion to prove that the recursive definition you found is
correct. (Hint:'Io flnd a recursive def,nition plot the
points in the set in the plane and look for patterns.)

a) S : {(a,b) la € Z+,b e Z+,and a t å is even}
b) S: {(a,b)laeZ+,be Z+,andaor åisodd}
c) S : {(a, b) la e Z+,b e Z+,and a * å is odd and

3l bj

30. Prove that in a bit string, the string 01 occurs at most
one more time than the string 10.

31. Define well-formed formulae of sets, variables repre-
senting sets, and operators from {-. U. n. - J.

32. a) Give a recursive deflnition of the function ones(s),
which counts the number of ones in a bit string s.

b) Use structural induction to prove lhat ones(st) :
ones(s) * ones(t).

33. a) Give a recursive.definition of the function n(s),
which equali the smallest digit in a nonempty
string of decimal digits.

b) Use structural induction to prove that m(st) :
min(m(s), m(t)).

J_60

The reversal of a string is the string consisting of the sy¡¡-
bols of the string in reverse order. The reversal of 1¡.
string u' is denoted by uR.

34. Find the reversal of the following bit strings.

a) 0101 b) I 1011 c) 1000 1001 01tl
35. Give a recursive definition of the reversal of a string.

(Hint: First define the reversal of the empty string.
Then write a string u of length ¡z * I as "ry, where ¡ ¡g

a string of length ,?, and express the reversal of u in
terms of xR and y.)

*36. Use structural induction to prove that (u,r1u2)R 
=,frf.

37. Give a recursive definition of u.,i where ur is a string
and i is a nonnegative integer. (Here rui represents
the concatenation of i copies of the string u,,.)

*38. Give a recursive definition of the set of bit strings that
are palindromes.

39. When does a string belong to the set A of bit strings
defined recursively by

)"c A

OxleAtfx<A,
where À is the empty string?

*40. Recursively define the set of bit strings that have
more zeros than ones.

41. Use Exercise 37 and mathematical induction to show
that /(ur¡) : i ' l(u), where ¿u is a string and I is a
nonnega{ive integer.

*42. Show that (un)i : (lr¡)R whenever ø is a string and
I is a nonnegative integer; that is, show that the ith
power of the reversal of a string is the reversal of the
r th power of the sl.ring.

43. Use structural induction to show that n(7) >
zh(T) + 1, where Z is a full binary tree, n(7) equals
the number of vertices of Z, and h(T) is the height
ofT.

The set of leaves and the set of internal vertices of a full
binary tree can be deflned recursively.

Basis step: The root r is a leaf of the full binary tree with
exactly one vertex r. This tree has no internal vertices.

Recursiue step: Ttle set of leaves of the tree T : Tt .Tz

is the union of the set of leaves of Zr and the set of leaves

of Zz. The internal vertices of 7 are the root r of Z and
the union of the set of internal vertices of Ir and the set

of internal vertices of 72.

44. Use structural induction to show that l(7), the num-
ber of leaves of a full binary tree 7, is 1 more than
I (f ), the number of internal vertices of ?.

45. Use generalized induction as was done in Example 15

to show that if a,,,.,, is def,ned recursively by aç;.s : 0

and

ant,n:
a,t-t.¡t*l if n:0and.¡z > 0
ant,,-t* I if ¡l > 0,{

then tt,,,.,, : nt ! n for all (m, n) e N x N
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ÀÁ lJse generalized induction as was done in Example 15

'"' ,o .ho* thaf if a,,,.,, is deflned recursively by 41, t : 5

and
a*-t.n *2 if n: I andm > I
an,n-t l2 iÎ n > l,

thefl a,,,.,, - 2(m -l n) + 1 for all (m, n) e Z+ x z+ '

*ú. A partition of a positive integer n is a way to write n

as a sum of positive integers. For instance, T : 3 -l
Z + I + 1 is a partition of 7 . Let P,,, equal the number

of different partitions of re, where the order of terms

in the sum does not matter, and let P,,,,,, be the number

of different ways to express m as the sum of positive

integers not exceeding 
'?.

a) Show that P,,,,,,, : P,,,'

b) Show that the following recursive deflnition for
P,,r,,, is correct:

I
I
P,,,,,

7 I Put,,,-t

Pr,,, I I Prr-r,,

c) Find the number of partitions of 5 and of 6 using
this recursive defi nition.

Consider an inductive definition of a version of Acker-
mânn's function. This function was named after Wilhelm
Ackermann, a German mathematician who was a student
of the great mathematician David Hilbert. Ackermann's
function plays an important role in the theory of recur-
sive functions and in the study of the complexity of certain
algorithms involving set unions. (There are several differ-
ent variants of this function. All are called Ackermann's
function and have similar properties even though their
values do not always agree.)

( 2n if m:0
I o [m> landr:ot-Atu,n):\2 iln>landr:l
I A(m - l, A(m, r - l))
I ifm>landn>2

Exercises 48-55 involve this version of Ackermann's
function.

48. Find these values of Ackermann's function.

*

a) A(1,0) b) A(0, l)
c) A(r, 1) d) A(2,2)

49. Show that A(m,2) :4 whenever m > l.
50. Show that A(1, n) :2', whenever n > L
51. Find these values of Ackermann's function.

â) A(2,3) xb) A(3,3)
52. Find A(3,4).
53. Prove that A(m,¡¿ * 1) > A(m,n) whenever m andn

58.

Prove that A(i, j) > j whenever i and j are nonneg-
ative integers.
Use mathematical induction to prove that a func-
tion F defined by specifying F(0) and a rule for ob-
taining F(n -l l) from F(n) is well deflned.
Use strong induction to prove that a function F de-
fined by specifying F(0) and a rule for obtaining
F(n -l l) from the values F(fr) for k :0,1,2, . . ., n is
well deflned.
Show that each of these proposed recursive def,ni-
tions of a function on the set of positive integers does
not produce a well-defined function.

a) F(n): 1 + F( ln/21) for n > 1 and ¡'(l) : 1.

b) F(n) : t -l F(n - 3) for n > 2, F(1) :2,aîd
F(2):3.

c) F(n) : I * F(n/2) for ¡z > 2, F(1) : 1, and
F(2) :2.

d) r(n) : 1 + F(nl2) if ¡¿ is even and n > 2,

F(n) : I * F(n * l) iln is odd, and r(1) : 1.

e) F(n) : I + F(nl2)if iz is even andn > 2, F(n) :
F(3n - 1) if n is odd and n > 3,and F(1) = 1.

59. Show that each of these proposed recursive defini-
tions of a function on the set of positive integers does
not produce a well-defined function.

a) F(n):l+F(l(n+1)l2l) for n>l and
F(l): 1.

b) F(n) : 1 -f F(n - 2) for n > 2 andF(l) : 0.

c) F(n) : 1-l F(n/3) lot n > 3, F(1) : l, F(2) :2,
and F(3) :3.

d) F(n) : I * F(n/2) if ¡¿ is even and n > 2,

F(n) : I I F(n - 2) if n is odd, and r(1) : 1.

e) F(n):t*F(F(n - 1))if n >2andF(t):2.

Exercises 60-62 deal with iterations of the logarithm func-
tion. Let 1og n denote the logarithm of n to the base 2, as

usual. The function log(k) rz is defined recursively by

n ifk:O
log(log(k r) n) if log{t-tl n is deflned

and positive
undefined otherwise.

55.

trs 56.

rs 57.

D_

if m: I
if n: I
iïm <n
ifm:n>l
lfnt>n>l

.. are nonnegative integers.*54. Prove tnuí eç* + 1,;) >- A(m, n) whenever m and n
are nonnegative integers.

log(k) n :

The iterated logarithm is the function log* n whose value
at n is the smallest nonnegative integer ft such that
log(k) n < l.

60. Find each of these values:

a) log(2) 16

b¡ log(3) 256

c) log(3) 2ass:e

d) log(Ð 2z6ssza

61. Find the value of log* rz for each of these values of n:

ù)2 b)4 c)8 d)16
e't256 f) 65536 g)22048

62. Find the largest integer n such that log* n :5. Deter-
mine the number of decimal digits in this number.

Í
I
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F,xercises 63-65 deal with values of iterated functions'

Suppose that f(n) is a function from the set of real

numbers, or positive real numbers, or some other set of
real numbers, to the set of real numbers such that /(rz)
is monotonically increasing [that is, /(iz) < /(m) when

n < m) and f (n) < n for all ¿ in the domain of /'] The

function ¡{r)1n) is deflned recursively by

f(k) Ø) : n if fr:O
¡çrr-tt@D if¿>0.

Furthermore,let c be a positive real number. The iterated

s_62

function f,l is the number of iterations of / required to ¡s-
duce its argument to c or less, so that fl (n) is the smallest

nonnegative integer k such that fu(n) . ,.

63. Let f (n) : n - a,whete ais a positive integer. Find ¿

formula lor f&)1n¡.What is the value of ff(iz) whe¡
n is a positive integer?

64. Let f (n) : nl2.Find a formula lor f{k)çn\. What is

the value of /i(iz) when n is a positive integer?

65. Let l@) : n6. Find a formula fot f{k)1n¡' What is

the value of f] (n) when z is a positive integer?
{

ß Recursive Algorithms

DEFINITION 1

EXAMPLE 1

INTRODUCTION

Sometimes we can reduce the solution to a problem with a particular set of input to the

solution of the same problem with smaller input values. For instance, the problem of

f,nding the greatest common divisor of two positive integers a and b where b > a can

be reduced to frnding the greatest common divisor of a pair of smaller integers, namely,

å mod a aîd a,since gcd(b mod a, a) : gcd(a, å). When such a reduction can be done,

the solution to the original problem can be found with a sequence of reductions, until

the problem has been reduced to some initial case for which the solution is known. For

instånce, for finding the greatest common divisor, the reduction continues until the smaller

of the two numbers is zero, since gcd(a, 0) : a when a > 0'

We will see that algorithms that successively reduce a problem to the same problem

with smaller input are used to solve a wide variety of problems'

An algorithm is called recursive if it solves a problem by reducing it to an instance

of the same problem with smaller input.

we will describe several different recursive algorithms in Examples 1",2,4,5,and 6. The

first example shows how a recursive algorithm can be constructed to evaluate a function

from its recursive definition.

Give a recursive algorithm for computin g a' where ø is a nonzero real number and n is

a nonnegative integer.

Solution: We can base a recursive algorithm on the recursive definition of an ' This defi-

,rlt-i-orrtat", fhaïantl : a.e" forn > 0 andtheinitialconditiona0 : l.^Îof,rtda',
successively use the recursive condition to reduce the exponent until it becomes zero'We

give this procedure in Algorithm 1. <


