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45.

**46.

47.

uct ofthe sum ofthe divisors ofs and the sum ofthe
divisors of ¡.
Prove that the integer zt'-t(2p - 1) is perfect when
2P - I is a Mersenne prime.

Prove that if n is an even integer that is þerfect, then
¡ - )n (/n - 1), where 2p - 1 is a Mersenne prime.

Prove or disprove that if you have an eight-gallon jug
of water and two empty jugs with capacities of ûve
gallons and three gallons, respectively, then you can

measure four gallons by successively pouring some of
or all of the water in a jug into another jug.
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*48. Prove or disprove that if n is a positive integer, then
t"/Ç + .'fr + l) : ¡r-an ¡21

49. Show that the problem of determining whether a pro-
gram with a given input ever prints the digit 1 is un-
solvable.

50. Show that the problem of deciding whether a specific
program with a speciflc input halts is solvable.

51. Show that the following problem is solvable. Given
two programs with their inputs and the knowledge
that exactly one of them halts, determine which halts.

G Sequences and Summations

DEFINITION 1

EXAMPLE I Consider the sequence {ar},where

a' : Iln'

The list of the terms of this sequence, beginning with a1, namely,

Ql,Q2,43,a4'...,

INTRODUCTION

Sequences are used to represent ordered lists of elements. Sequences are used in discrete
mathematics in many ways. They can be used to represent solutions to certain counting
problems, as we will see in Chapter 6. They are also an important data structure in com-
puter science. This section contains a review of the concept of a function, as well as the
notation used to represent sequences and sums of terms of sequences.

When the elements of an infinite set can be listed, the set is called countable. We will
conclude this section with a discussion of both countable and uncountable sets. We will
prove that the set of rational numbers is countable, but the set of real numbers is not.

SEQUENCES

A sequence is a discrete structure used to represent an ordered list.

A sequence is a function from a subset of the set of integers (usually either the set

{0,1,2,...} or the set {1,2,3,...}) to a set S. We use the notation an to denote
the image of the integer n,We çall an a term of the sequence.

We use the notation {a"} to describe the sequence. (Note fhaÍ. a, represents an individual
term of the sequence {an }. Also note that the notation {a,rl for a sequence conflicts with
the notation for a set. llowever, the context in which we use this notation will always
make it clear when we are dealing with sets and when we are dealing with sequences.

Note also that the choice of the letter a is arbitrary.)
\üe describe sequences by listing the terms of the sequence in order of increasing

subscripts.
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DEFINITION 2

EXAMPLE 2

DEFINITION 3

EXAMPLE 3

A geometric progression is a sequence of the form

a,ar,arz,...,arn,
where the initial term a and the common ratio r are real numbers.

Remarh: A geometric progression is a discrete analogue of the exponential function

f(x) : ar'.

The sequences {b,} with b, : (-1)", {cr} with cn : 2' 5', and {drl wíth d, : 6 .

(ll3)" are geometric progressions with initial term and common ratio equal to -1 and

- 1; 10 and 5; and 2 and I l3,respectively. The list of terms bt, bz, bz, b+,. . . begins with

-1, 1, -1, 1, ...;
the list of terms ct, cz, c3, ca, . . . begins with

10, 50, 250, 1250, . . .;

and the list of terms d1, d2, dz, d+,. . . begins with

2,213,219,2/27,.... <

An arithmetic progression is a sequence of the form

a,a * d,a *2d, ...,a * nd,

where the initial term a and the common dffirence d are real numbers.

Retnarh: An arithmetic progression is a discrete analogue of the linear function f (x) =
dxla.

The sequences {sr} with sn - -1 * 4n and {¡,} with tn : 7 - 3n are both arith-

metic progressions with initial terms and common differences equal to - 1 and 4, and 7

and -3, respectively. The list of terms, starting with the term with lz : 0, .ç0, 's1 , 's2, J3, . . ,

begins with

-7,3,7,11,...,
and the list of terms ts, t1, t2, h,

7,4,1,-2,....
begins with

Sequences of the form a 1, a2, . . . , Qn aÍe often used in computer science. These finite
sequences are also called strings. This string is also denotedby a1a2 ' ' 'øn. (Recall that

bit strings, which are finite sequences of bits, were introduced in Section 1.1.) The length

of the string S is the number of terms in this string. The empty string, denoted by À, is the

string that has no terms. The empty string has length zero.

EXAMPLE 4 The string abcd is a string of length four
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SPECIAL INTEGER SEQUENCES

A common problem in discrete mathematics is finding a formula or a general rule for
constructing the terms of a sequence. Sometimes only a few terms of a sequence solving
a problem are known; the goal is to identify the sequence. Even though the initial terms
of a sequence do not determine the entire sequence (after all, there are infinitely many
different sequences that start with any finite set of initial terms), knowing the first few
terms may help you make an educated conjecture about the identity of your sequence.
Once you have made this conjecture, you can try to verify that you have the correct
sequence.

When trying to deduce a possible formula or rule for the terms of a sequence from
the initial terms, try to find a pattern in these terms. you might also see whether you
can determine how a lerm might have been produced from those preceding it. The¡e are
many questions you could ask, but some of the more useful are:

r Are there runs of the same value?

I Are terms obtained from previous terms by adding the same amount or an amount
that depends on the position in the sequence?

r Are terms obtained from previous terms by multiplying by a particular amount?
I Are terms obtained by combining previous terms in a certain way?

I Are there cycles among the terms?

EXAMPLE 5 Find formulas for the sequences with the following first five terms: (a) l,l/2,r/4,1/8,
1/16 (b)r,3,s,1,9 (c) 1,-1,1,-1,1.

solution: (a) we recognize that the denominators are powers of 2.Tlne sequence with
an : 7 /2"-1 is a possible match. This proposed sequence is a geometric progression with
a:landr:I12.

(b) we note that each term is obtained by adding 2 to fhe previous term. The se-
quence wiTh a,, : 2n - 1 is a possible match. This proposed sequence is an arithmetic
progression wi|.h a : I and d : 2.

(c) The terms alternate between I and -1. The sequence with an : (-I)"+1 is
a possible match. This proposed sequence is a geometric progression with a : I and

Ir:-1. <

Examples 6 and7 illustrate how we can analyze sequences to find how the terms are
constructed.

EXAMPLE 6 How can we produce the terms of a sequence if the f,rst 10 terms are L,2,2,3,3,3,4,
4,4,4?

Solution: Note that the integer 1 appears once, the integer 2 appears twice, the integer 3
appears three times, and the integer 4 appears four times. A reasonable rule for generating
this sequence is that the integer t? appears exactly n times, so the next five terms of the
sequence would all be 5, the following six terms would all be 6, and so on. The sequence
generated this way is a possible match. <

EXAMPLE 7 Howcanweproducethetermsof asequenceif thefirstl0termsare 5,II,1J,23,29,35,
41,47,53,59?

.:',Extla.'''.' ,':
:: :EiàtÍþl-bi:i''
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Solution: Note that each of the flrst 10 terms of this sequence after the first is obtained by

adding 6 to the previous term. (\We could see this by noticing that the difference between

conseðutive terms is 6.) Consequently, the z¿th term could be produced by starting with 5

and adding 6 a total of n - 1 times; that is, a reasonable guess is that the nth term is

5 1- 6(n--1) : 6n - l.(Thisis anarithmeticprogressionwithø : 5 andd : 6.) <

Another useful technique for f,nding a rule for generating the terms of a sequence

is to compare the terms of a sequence of interest with the terms of a well-known integer

."qrr"n"", such as terms of an arithmetic progression, terms of a geometric progression,

perfect squares, perfect cubes, and so on. The first 10 terms of some sequences you may

want to keep in mind are displayed in Table 1.

Conjecture a simple formula for a, ilthe f,rst 10 terms of the sequence {ar} are L,7,25,

7 9, 247, 7 27, 2185, 6559, 1968L, 59047 .

Solution: To attack this problem, we begin by looking at the difference of consecutive

terms, but we do not see a pattern. When we form the ratio of consecutive terms to see

whether each term is a multiple of the previous term, we find that this ratio, although

not a constant, is close to 3. So it is reasonable to suspect that the terms of this sequence

are generated by a formula involving 3'. Comparing these terms with the corresponding

terms of the sequence {3n }, we notice that the nth term is 2 less than the corresponding

powerof3.\Weseethatan:3n-2forl<n<l0andconjecturethatthisformula
holds for all ¡¿. <

rwe will see throughout this text that integer sequences appear in a wide range of con-

texts in discrete mathematics. Sequences we have or will encounter include the sequence

of prime numbers (Chapter 2),fhe number of ways to order n discrete objects (Chapter

a),ìne number of the moves required to solve the famous Tower of Hanoi puzzle with n

disks (chapter 6), and the number of rabbits on an island aftet n months (chapter 6).

Integer sequences appear in an amazingly wide range of subject areas besides discrete

mathemãtics, including biology, engineering, chemistry, and physics, as well as in puzzles'

A wonderfully diverse collection of over 8000 different integer sequences has been con-

structed over the past 20 years by the mathematician Neil Sloane, who has teamed up

with Simon Plouffe, to produce The Encyclopedia of Integer Sequences ([SlP195]). An ex-

tended list of the sequetìces is available on the Web, with new sequences added regularly'

There is also a program accessible via the Web that you can use to find sequences from

the encyclopedia that match initial terms you provide.

EXAMPLE 8

TABLE 1 Some Useful Sequences.

Fírst 10 Termsnth Term

l, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

r, 8, 27, 64, 125, 216, 343, 5r2,729, 1000, . . .

1, 16, 8i, 256,625,1296,2401,4096,6561, 10000, .

2, 4, 8, 16, 32, 64, 128, 256, 5r2, 1024, . . .

3,9,27,81,243,729,218'1,6561, 19683 ,59049, . . .

1, 2, 6, 24, r20, 7 20, 5040, 40320, 362880, 3628800,

n2
In'

n4

2n

3n

nl.
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SUMMATIONS

Next, we introduce summation notation. We begin by describing the notation used to
express the sum of the terms

am' amll, . . , , (rn

from the sequence {an }. We use the notalion

n

Ð"t or D"¡:*o¡

to represent

a- * as¡1 1 "'l an

Here, the variable j is called the index of summation, and the choice of the letter j as
the variable is arbitrary; that is, we could have used any other letter, such as i or fr. or, in
notation,

n n

Ð
i:m

t
k:m

r a Ai ak

Here, the index of summation runs through all integers starting with its lower limit ¡ø
and ending with its upper limit zl. The uppercase Greek letter sigma, E, is used to denote
summation. We give some examples of summation notation.

NEIL SLOANE (BORN 1939) Neil Sloane studied mathematics and electrical engineering at the
University of Melbourne on a scholarship from the Australian state telephone company. He mastered
many telephone-¡elated jobs, such as erecting telephone poles, in his summer work. After graduating,
he designed minimal cost telephone netwo¡ks in Australia. ln1962 he came to the United States and
studied electrical engineering at Cornell University. His Ph.D. thesis was on what are now called neural
networks. He took a job at Bell Labs in 1969, working in many areas, including network design, coding
theory, and sphere packing. He now works for AT&T Labs, moving there from Bell Labs when AT&T
split up in 1996. One of his favorite problems is the kissing probtem (a name he coined), which asks how
many spheres can be arranged in n dimensions so that they all touch a central sphere of the same size.
(In two dimensions the answer is 6, since 6 pennies can be placed so that they touch a central penny. In
three dimensions, l2 billiard balls can be placed so that they touch a central billiard ball. Two billiard balls
that just touch are said to "kiss," giving rise to the terminology "kissing problem" and "kissing number.")
Sloane, together with Andrew Odlyzko, showed that in I and24 dimensions the optimal kissing numbers
are, respectively,24} and 196,560. The kissing number is known in dimensions 1.,2,3,8, and 24, but not
in any other dimensions. Sloane's books include Sphere Packings, Lattices and Groups,3d ed., with John
Conway; The Theory of Etor-Correcting Codes with Jessie MacWilliams; The Encyclopedia of Integer
Sequences with Simon Plouffe; and The Rock-Climbíng Guide to New Jersey Crags wifh Paul Nick. The
last book demonstrates his interest in rock climbing; it includes more than 50 ciimbing sites in New Jersey.
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Express the sum of the f,rst 100 terms of the sequeîce {er},whete att : l/n for n =
r,2,3,....

EXAMPLE 9

,r:pxtra ,,.,'..;,.
,, ¡Exainúlds¡.

Solution: The lower limit for the index of summation is 1, and the upper limit is 100. We

write this sum as

100t j

EXAMPLE 10 What is the value ot ll:, ¡21

Solution: We have

5

D¡t:12*22+32+42+52
j:1

:1*4+9+16+25
: 55.

EXAMPLE 11 What is thevalue otfl:o{-t)ftt

Solution: We have

8

j:1

k:4
f t-rlo : (-1)4 + (-1)s + (-1)6 + (-1)7 + (-1)8

:1*(-1)+1+(-1)+1
- 1.

EXAMPLE 12

Sometimes it is useful to shíft the index of summation in a sum. This is often done

when two sums need to be added but their indices of summation do not match. When

shifting an index of summation, it is important to make the appropriate changes in the

corresponding summand. This is illustrated by the following example.

Suppose we have the sum

5

\- ;2
1Jr
J:I

but want the index of summation to run between 0 and 4 rather than from L to 5. To do

this, we let k : j - 1 Then the new summation index runs from 0 to 4, and the term i2
becomes (k + Ð2. Hence

54
fl,:ftk+1.12./r' L'
j:1 k:0

Itis easilycheckedthatbothsums are l+4+9 + 16 + 25:55- <

Sums of terms of geometric progressions commonly arise (such sums are called

geometric series). Theoiem 1 gives us a formula for the sum of terms of a geometric

progression.

,,:.Ext¡a'' : ..
" E:iamPles'
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,s- r-l
If r : l, then clearly the sum equals (n -f l)a
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THEOREM 1

EXAMPLE 13

If a and r arerealnumbers andr { 0,then

, (ern+l-a .-

Ðort:{ ,-r ilrft
i:o [{n+t), ifr:1.

Proof: Let
n

5 - )--arl.
j:0

To compute s, first multiply both sides of the equality by r and then manipulate the
resulting sum as follows:

rs : rDort
j:0

tx

:l arì+l
i:0
n+l

:Y ork
k:1

tl

:l ork I (arn+I - a)
k:0

:S*(ar"+L- a).

From these equalities, we see that

rS:Sl(ar"+l- a).

Solving for S shows fhaf if r I I

We obtain this equality by shifting the index of
summation,setting k: .i + 1.

ar'*1 - a

Double summations arise in many contexts (as in the analysis of nested loops in computer
programs). An example of a double summation is

43
DT,;
i:l j:l

To evaluate the double sum, first expand the inner summation and then continue by
computing the outer summation:

434

Ir ij :DQ +2i +3¡)
t:l j:l i:l

4

:\-6¡
L-

:6* 12+18*24:69. <
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Wecanalsousesummationnotationtoaddallvaluesofafunction,ortermsofan
indexed set, where trr" in¿"" of summation runs over all values in a set' That is' we write

\- rr.ti/-r' ' '
seS

to represent the sum of the values /(s)' for all members s of S'

EXAMPLE 14 Whatisthevalueof I . f0,2,4\s?

Solution: Since !, e\0,2,4\s represents the sum of the values of s for all the members of

the set 10,2,4\,it follows that

t s-0t2*4:6' <

s e {0,2,4}

Certainsumsariserepeatedlythroughoutdiscretemathematics.Havingacollection
of formulae for such ,'-.î., U"ïseful,ioTable 2 provides a small table of formulae for

commonlY occurring sums'

WederivedtheflrstformulainthistableinTheoreml.Thenextthreeformulae
giveusthesumofthefrrstnpositiveintegers,thesumoftheirSquares,andthesumof
their cubes. These trrree,ìãrmulu" 

"un 
b" derived in many different ways (for example' see

Exercises 2L and22at trr" "nã 
or this section). Also notsthat each of these formulae' once

known, can 
"arily 

u" präu"Jrr*lrrg -uthematical induction, the subject of Section 3'3' The

last two formulae n trre taute iniolve infinite series and will be discussed shortly'

Example 15 illustrates how the formulae inTable 2 canbe useful'

EXAMPLE 15 nna llojrok2

TABLE 2 Some Useful Summation Formulae'

Closed Form
Sum

u!\e,, +t
n(n * l)

2

n2(n + l)2

1-x

o-æ

6

4

1

1

n(n + l)(2n +1)

'i-T ^ork v *0)DK:V

Ði--'k

Ði:,k'

Ði:'k'

Dto xk,1x1 t I

Dt,,kxk-t,lxl < 1
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Solution: Firsr nore rhar since DI|,lr, : DXn: ,k, + D|o!r¡k2, we have

100 100 49

D o': t k, -Ðk,
ft:50 k:t k:1

Using the formula Di:rk' : n(n * l)(2n t 1)/6 fromTable2,wesee rhar

g .., roo . ror . 2or 49 .50.gg

o?non: 6 - 6 :338'350-40'425:291'925 i

l

SOME INFINITE SERIES Although most of the summations in this book are finite
sums, infinite series are important in some parts of discrete mathematics. The closed forms
for the infinite series in Examples 16 and 17 are quite useful.

EXAMPLE 16 (Requires calculus) Let r be a real number with lxl < 1. Find Dî:o*"

,,::-:Extra r,. , ,

:r :Sxagrþlo,s-':'
:

Solution: ByTheoremlwith a: landr : -rweseethat!f:¡x, : t!4
Because lxl < l,xk+t approaches 0 as k approaches infinity. It follows that

oo ,k1t- t _l I.r': lim :-
k->oo x-l x-I 7-xt

n:0

We can produce new summation formulae by differentiating or integrating existing
formulae.

EXAMPLE 17 (Requires calculus) Differentiaring both sides of rhe equarion

æ
\r-k- I

7u r-x
from Example 16, we find that

oo
1

I /t"n-t :
(r - x)2k:1

(This differentiation is valid for lx | < I by a theorem about infinite series.)

CARDINALITY

Recall that in Section 1..6,the cardinality of a flnite set was defined to be the number of
elements in the set. It is possible to extend the concept of cardinality to all sets, both finite
and infinite, with Definition 4.

The sets A and B have the same cardinality if and only if there is a one-to-one
correspondence from Ato B.

DEFINITION 4



3-23

and

12

il
t3

3-22
234 3 / Mathematical Reasoning, Induction' and Recursron

DEFINITION 5

EXAMPLE 19

To see that this definition agrees with the previous definition of the cardinality of a finite

set as the number of elements in that set, note that there is a one-to-one correspondence

betweenanytwofinitesetswithnelements,whefenisanonnegativeinteger.
Wewillnowsplitinfinitesetsintotwogroups,thosewiththesamecardinalityasthe

set of natural numbers and those with different cardinality'

A set that is either finite or has the same cardinality as the set of positive integers

is called countable'A set that is not countable is called uncountable'

We now give examples of countable and uncountable sets'

EXAMPLElsShowthatthesetofoddpositiveintegersisacountableset.

solution: To show that the set of odd positive integers is countable' we will exhibit a

one-to-one correspondence between this set and the set of positive integers' Consider

the function

f @):Zn _ |

fromz+ to the set of odd positive integers. we show that / is a one-to-one cofrespondence

by showing that it is both one-to-one and onto. To see that it is one-to-one' suppose that
"f 

fî¡: iç*¡.fA"n2n -l:2m - l,sothat n: m'Toseethatitisonto'suppose

that/isanoddpositiveinteger.Then/isllessthananeveninteger2k,wherekísa
natural number. Hence ¡ : it - I : f (k).We display this one-to-one correspondence

in Figure 1. <

An infinite set is countable if and only if it is possible to list the.elements of the set

inasequence(indexedbythepositiveintegers).Thereasonforthisisthataone-to-one
correspondence l. from tíre seiof positive integers to a set s-can be expressed in terms of

asequence ar,a2,'..,;;:, *h"'" o' : ¡çt¡'a2 : f(2)' "''an :'f(n)'" " For

instance, the set of oOä irrt"g"rs can be listeà in a sequence ar'a2' "''an' ' " ' where

an :2n - l'

Show that the set of positive rational numbers is countable'

Solution:Itmayseemsurprisingthatthesetofpositiverational'numbersiscount.
able, but we wiil show how *" 

"un 
tist the positive rational numbers as a sequence

11,12,...,rn,'... First, note that 
"u"'y 

positive rational number is the quotiertf plq

of two positive integers. \ffe can arrange the positive rational numbers by listing those

with denomi îator q: 1 in the frrst row, those with denomiîalor q _ 2 in the second

row, and so on, as displayed in Figure 2'

The key to listing thå rationainumbers in a sequence is to firsf list the positive rational

numbers plqwirh p I q :2,followedbythãse*ltn p t q :3'followedbythose with

p + q :4, and so o", totto*ing the path shown in Figure 2' Whenever we encounter a

numberplqrhatisalreadylisted,wedonotlistitagain'Forexample'whenwecometo
2 I 2 : 1 we do not list it since we huu" ul."udyiirt ea i ¡ I : 1. The initial terms in the list of

positive rational numbers we have constructeãl " 
f" t ¡Z'2'3' l13' Il4'2/3'312' 4'5'

and so on. Beçause all rational numbers are listed once' as the reader can verify' we have

shown that the set of rational numbers is countable' <
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FIGURE L A One-fo-One Correspondence Between Z+

anit fhe Set of Odd Positive Integers.
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FIGURE 2 The Positive Rational
Numbers Are Counfable.

Example 20 shows that the set of real numbers is uncountable. Georg Cantor dis-
covered this fact in 1879. We use an important proof method, known as the Cantor diag-
onalization argument, to prove that the set of real numbers is not countable. This proof
method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 20 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set

of real numbers is countable and arrive at a contradiction. Then, the subset of all real
numbers that fall between 0 and 1 would also be countable (since any subset of a countable
set is also countable; see Exercise 34 at the end of the section). Under this assumption,
the real numbers between 0 and 1 can be listed in some order, say, /t, 12, 13, .. . . Let the
decimal representation of these real numbers be

rt :0.dtdtzdndv ...
rz-Ù.dztdzzdzzdzq...
rt:O.dttdzzdzzdzq...
r+:0.dqtdqzdqzd++...

whered¡¡ € {0, 1,2,3,4,5,6,7,8,9}.(Forexample,if 11:0.23794102...,wehave
dt : 2,dn : 3,dn - 7, and so on.) Then, form a new real number with decimal
expansion r : O.dtdzdsdq . . . , where the decimal digits are determined by the follow-
ing rule:

d¡-
4 if dii +4
5 if dii:4.

(As an example, suppose that 11 : 0.23194102..., rz : 0.44590138. .., 13 :
0.09118164. . ., 14 : 0.80553900. . ., and so on. Then we have r : O.dtdzdzd¿,. . . -
0.4544..., where dt : 4sinced11 * 4,dz: 5 since dzz : 4,dz : 4 since dy f 4,
dq : 4 since d44 t' 4,and so on.)

Every real number has a unique decimal expansion (when the possibility that the
expansion has a tail end that consists entirely of the digit 9 is excluded). Then, the real
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number /" is not equal to any of ri, 12, . . . , since the decimal expansion of r differs frorn
the decimal expansion of r, in the i th place to the right of the decimal point, for each i .

Since there is a real number r between 0 and 1 that is not in the list, the assumption
that all the real numbers between 0 and 1 could be listed must be false. Therefore, all
the real numbers between 0 and 1 cannot be listed, so that the set of real numbers be-
tween 0 and 1 is uncountable. Any set with an uncountable subset is uncountable (see

Exercise 35 at the end of this section). Hence, the set of real numbers is uncountable. 1

Exercises
1. Find these terms of the sequence {a,,1 where a,, :

2. (-3)', + 5', .

à) ao b) a¡ c) aq d) as

2. What is the term ¿zs of the sequence {a,, } if a,, equals

à) 2¡1-t,t b) 7?

c) I + (-t)"? d) -(,2),?
3. What are the terms a6, a1,a2,ãnd a3 of the sequence

{a,, }, where a,, equals

a) 2" * l? b) (rz * 1)"+r?
c) Ln/2)? d') tn/2J-r ln/21?

4. What are the terms a6, a1,a2,aîduz3 of the sequence

{a,,}, where a,, equals

a) (-2)"? b) 3?

c) 7 + 4',? d) 2', + (-2)',?

5. List the first L0 terms of each of these sequences.

a) the sequence that begins with 2 and in which each
successive term is 3 more than the preceding term

b) the sequence that lists each positive integer three
times, in increasing order

c) the sequence that lists the odd positive integers in
increasing order, listing each odd integer twice

d) the sequence whose nth term is nl -2"
e) the sequence that begins with 3, where each suc-

ceeding term is twice the preceding term

Ð the sequence whose first two terms are 1 and each
succeeding term is the sum of the two preced-
ing tenns (This is the famous Fibonacci sequence,
which we will study later in this text.)

g) the sequence whose rzth term is the number of bits
in the binary expansion of the nurnber n (defined
in Section 2.5)

h) the sequence where the ¡zth term is the number of
letters in the English word for the index ¡r

6. List the first 10 terms of each of these sequences.

a) the sequence obtained by starting with 10 and ob-
taining each term by subtracting 3 from the pre-
vious term

b) the sequence whose ¡rth term is the sum of the
first n positive integers

c) the sequence whose nth term is 3' -2'
d) (he sequence whose rlh term is I ufil
e) the sequence whose first two terms are 1 and 2

and each succeeding term is the sum of the two
previous terms

f) the sequence whose nth term is the largest integer
whose binary expansion (defined in Section 2.5)
has ¡z bits (Write your answer in decimal nota-
tion.)

g) the sequence whose terms are constructed se-

quentially as follows: start with 1, then add 1 , then

äTïotr 
by 1, then add 2, then multiply by 2, and

h) the sequence whose ¡rth term is the largest integer
A such that ft! < n

7. Find at least three different sequences beginning with
the terms 1,2,4 whose terms are genelated by a sint-
ple formula or rule.

8. Find at least three different sequences beginning with
the terms 3,5,7 whose terms are generated by a sirn-
ple formula or rule.

9. For each of these lists of integers, provide a simple
formula or rule that generates the terms of an inte-
ger sequence that begins with the given list.

0, l, 1,0,0, 1, 1, 1,0,0,0, 1,

2, 2, 3, 4, 4, 5, 6, 6,7, 8, 8, . .

0,2,0, 4,0, 8, 0, 16, 0, ...
6, 12, 24, 48. 96, t92. . . .

, 8, 1, -6, -13, -20, -27, . .

5, 8, t2, 1'7, 23, 30, 38, 4'7, . .

t6, s4, t28, 250, 432, 686, . .

h') 2,3,7,2s,121,72t, s04t,4032t, . . .

10. For each of these lists of integers, provide a simple
formula or rule that generates the terms of an inte-
ger sequence that begins with the given list.

a) 3, 6, 11, 18,27,38, 51, 66, 83, 102,...
b) 7, 11, ts, t9,23,27,3t,35,39, 43,...
c) 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010,

' 1011,...
d) t,2,2,2,3,3,3,3,3,5,5,5,5, 5, 5,5, .. .

e) 0,2,8, 26, 80, 242,728,2186, 6560, 19682, ...

a) 1,

b) 1,

c) l,
d) 3,

e) 15

Ð3,
Ð2,
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Ð 1,3, t5, 105, 945, 10395, 135135,2027025,

34459425' . '.
s) 1.0,0, l. l. 1,0,0,0.0, l, l. I, I, 1,...
n'l 2, a, t6, 256. 65536, 4294967296, . . .

x11 Show that if a,, denotes the n th positive integer that

is not a perfect square, then an : n I {^/n}, where {x}
denotes the integer closest to the real number x.

*12, Let a,,be the nth term of the sequence 1',2,2,3,3,3,
4, 4,4, 4,5, 5, 5, 5, 5,6,6,6,6,6,6, .. . , constructed

by including the integer k exactly k times. Show that
oi,=LJ2n+1.

13. What are the values of these sums?
54

a) D (¿ + l) b) t (-2)i
k=l J:0
108

c) t 3 d) lçzi+t -2i¡
i:l j:0

14. What are the values of these sums, where 'S :
{1,3, s,'7}?

ùDj b) tj'?
j€S i€S

c) t(rr) d) D I
j€S J€S

15. What is the value of each of these sums of terms of a
geometric progression?

88
a) \-?.rj b) Ð2j

3.2 Exercises 237

a) a formula lor l'i_ r(2k - l) (the sum of the first
n odd natural numbers).

b) a formula for fi:, È.
*22. Use the technique given in Exercise 19, together

$rith the result of Exercise 21b,fo find a formula for
Ð'i:,k,.

23. Find t?oj,*¿. (Use Tabte 2.)
24. Find D?\nnk,. (Use Table 2.)

*25. Find a formula for l'/=sLJEJ, when ru is a positive
integer. (Hint:IJsettrã'tormuta for fi ,fr2.)

*26. Find a formula for !i':o Ll¿j, when nt is a positive
integer. (Hint: Use the formula for fi:,ft3.)

There is also a special notation for products. The product
of a,,r, a,rr¡y , . . . , d,, is represented by

II"''
27. What are the values of the following products?

a) llli. i b) lll:,t
c) il11,(-r)' d) lll1,2

Recall that the value of the factorial function at a posi-
tive integer n, denoted by n !, is the product of the positive
integers from 1 to n, inclusive. Also, we specify that 0! : 1.

28. Express n! using product notation.
29. Find 11 ^ ;1.¿J:v r

30. Find ill-r;t.
31,. Determine whether each of these sets is countable or

uncountable. For those that are countable, exhibit a

one-to-one correspondence between the set of natu-
ral numbers and that set.

a) the negative integers
b) the even integers
c) the real numbers between 0 and j
d) integers that are multiples of 7

*32. Determine whether each of these sets is countable or
uncountable. For those that are countable, exhibit a

one-to-one correspondence between the set of natu-
ral numbers and that set.

a) integers not divisible by 3

b) integers divisible by 5 but not by 7

c) the real numbers with decimal representations
consisting of all Ls

d) the real numbers with decimal representations of
all 1s or 9s

33. If A is an uncountable set and B is a countable set,

must A - B beuncountable?
34. Show that a subset of a countable set is also count-

able.
35. Showthatif A is anuncountable set and A c B,then

B is uncountable.
36. Show that the union of two countable sets is count-

able.

88

c)D (-3)' d) D 2. (-3)i

16. Find the value of each of these sums.
88

â) t(1+(-1)i) b) Ð(3i -2i)j:o j:0
88

c) t(2.3i +3.2i) d) ÐQi+t -2i)j:0 j:o
17. Compute each of these double sums.

2323
a) ! !(;+j) b) t DQi+3j)

32 23c)DDi d)IDtj
i:lj:o i:0j=1

18. Compute each of these double sums.

32
b) t t(3i+2j)

23
d) t Ð r'zj3

L9. Show that I'j:,(a. - a¡-) att - ao whete
ao, at, . . . , a,, is a sequence of real numbers. This type
of sum is called telescoping.

20. Use the identity 1/(k(k+ l)): l/k - l/(k+ l) aíd
Exercise 19 to compute Di- | | /(k(k + 1)).

2L. Sum both sides of the identity k2 - (k - l)2 :2k - t
from k : I to fr : n and use Exercise 19 to find

a)tt
32c)ÐD l

i

l

l

(r -i)
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**37. Show that the union of a countable number of count-

able sets is countable.
38. Show that the setZ+ x Z+ is countable'

*39. Show that the set of all bit strings is countable'
*40. Show that the set of real numbers that are solutions

of quadratic equations ax2 + bx t c : O,where a, b,

and c are integers, is countable.
*41. Show that the set of all computer programs in a par-

ticular programming language is countable' (Hint: A
computer program written in a programming lan-

guage can be thought of as a string of symbols from

a flnite alPhabet.)
*42. Show that the set of functions from the positive in-

tegers to the set {0,1,2,3,4,5,6' 7,8,9} is uncount-

able.l4int: First set up a one-to-one correspondence

between the set of real numbers between 0 and 1 and

a subset of these functions. Do this by associating to

the real number 0.d¿2. . .d,, . . .the function / with

f (n) : d,']
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*43. We say that a function is computable if there is a cor¡-
puter program that flnds the values of this function.

Use Exercises 4t a¡d 42 to show that there are func-

tions that are not comPutable.
x44. Prove that the set of positive rational numbers is

countable by setting up a function that assigns to ¿

rational number p I q wirh gcd(p, q) : 1 the base 11

number formed from the decimal representation of
p followed by the base 11 digit A, which corresponds

to the decimal number 10, followed by the decimal

representation of 4.
*45. Prove that the set of positive rational numbers is

countable by showing that the function K is a one-

to-one correspondence between the set of positive

rational numbers and the set of positive integers

l1 K(mln) : p1"'p1"' "' p?^ s?o'-'s1b'-' "'q?b'-t,
where gcd(n, n) : l and the prime-power factor-

izations of m and n aÍe m : pit pit'''pf' and n =
b. h¡ b,

Qi'Qz' "'Qt '

G Mathematical Induction

INTRODUCTION
'what is a formula for the sum of the flrst n positive odd integers? The sums of the first ¡¿

positive odd integers fot n : | ,2,3, 4, 5 are

r-r ll3:4, l+3+5:9.I :- I,

1+3+ 5+7:16, 1+3+ 5+7 +9:25.
From these values it is reasonable to guess that the sum of the first n positive odd integers

is ¡¿2. We need a method fo prove that this gøess is correct, if in fact it is'

Mathematical induction is an extremely important proof technique that can be used

to prove assertions of this type. As we will see in this section and in subsequent chapters,

maihematical induction is uied extensively to prove results about a large variety of dis-

crete objects. For example, it is used to prove results about the complexity of algorithms,

the correctness of certain types of computer programs' theorems about graphs and trees,

as well as a wide range of identities and inequalities'

In this section we will describe how mathematical induction can be used and why it is

a valid proof technique. It is extremely important to note that mathematical induction can

be used only to prove results obtained in some other way. flis not a tool for discovering

formulae or theorems.

There are several useful illustrations of mathematical induction that can help you

remember how this principle works. One of these involves a line of people, person one'

person two, and so on. A secret is told to person one, and each person tells the secret to the

next person in line, if the former person hears it. Let P (n) be the proposition that person

n knows the secret. Then P(1) is true, since the secret is told to person one; P (2) is true'

since person one tells person two the secret; P(3) is true, since person two tells person

three the secret; and så on. By the principle of mathematical induction' every person in

line learns the secret. This is iitustráted in figure 1. (Of course, it has been assumed that

each person relays the secret in an unchanged manner to the next person, which is usually

not true in real life.)


