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re Integers and Algorithms

INTRODUCTION

As mentioned in Section 2.I, the term algorithm orrginally referred to procedures for
performing arithmetic operations using the decimal representations of integers. These
algorithms, adapted for use with binary representations, are the basis for computer arith-
metic. They provide good illustrations of the concept of an algorithm and the complexity
of algorithms. For these reasons, they will be discussed in this section.

There are many important algorithms involving integers besides those used in arith-
metic, including the Euclidean algorithm, which is one of the most useful algorithms,
and perhaps the oldest algorithm, in mathematics. We will also describe an algorithm
for finding the base á expansion of a positive integer for any base b and for modular
exponentiation, an algorithm important in cryptography.

REPRESENTATIONS OF INTEGERS

In everyday life we use decimal notation to express integers. For example,965 is used to
denote 9'102 + 6. l0 + 5. However, it is often convenient to use bases other than 10.
In particular, computers usually use binary notation (with 2 as the base) when carrying
out arithmetic, and octal (base 8) or hexadecimal (base 16) notation when expressing
characters, such as letters or digits. In fact, we can use any positive integer greater than 1

as the base when expressing integers. This is stated in Theorem 1.

THEOREM 1 Let b be a positive integer greater than 1. Then if r is a positive integer, it can be
expressed uniquely in the fo¡m

n : akbk * a¡,-1bk-1 + .. .+ aþ * ao,

where t is a nonnegative integer, a0,at,...,(7k are nonnegative integers less than å,
and a¡ I 0.

The proof of this theorem can be found in [Ro99]. The representation of n given in
Theorem 1 is called the base á expansion of n. The base b expansion of n is denoted by
(a*aut. . . apo)b.For instance, (245)3 represents 2. 82 + 4 .8 * 5 : 165.

BINARY EXPANSIONS Choosing 2 as the base gives binary expansions of integers.
In binary notation each digit is either a 0 or a 1. In other words, the binary expansion of an
integer isjust a bit string. Binary expansions (and related expansions that are variants of
binary expansions) are used by computers to represent and do arithmetic with integers.

EXAMPLE 1 What is the decimal expansion of the integer that has (1 0101 1111)2 as its binary expan-
sion?

Solution: We have

(1 0101 llll)2:1.28 + 0.27 +1.26 + 0.2s +1.24
+ l. 23 + l. 22 + l. 2t I r.2o : 351



I
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HEXADECIMAL EXPANSIONS Sixteen is another base used in computer science.

The base 16 expansion of an integer is called its hexadecimal expansion. Sixteen different

digits are required for such expansions. Usually, the hexadecimal digits used are 0,7,2,
3,4,5,6,1,8,9, A, B, C, D, E, and R where the letters A through F represent the digits

corresponding to the numbers 10 through 15 (in decimal notation).

EXAMPLE 2 What is the decimal expansion of the hexadecimal expansion of (2AE0B)16?

Solution: We have

(2AE0B)r6 :2.16a + 10.163 +14.162+ 0.16+ 11 :(175621)rc

Each hexadecimal digit can be represented using four bits. For instance, we see that

(1110 0101)2 : (E5)ro since (1110)z : (E)rc and (0101)z : (5)re . Bytes, which are

bit strings of length eight, can be represented by two hexadecimal digits.

BASE CONVERSION We will now describe an algorithm for constructing the base b

expansion of an integer r¿. First, divide n by b to obtain a quotient and remainder, that is,

n:bqolao, 0lao<b.

The remainder, ú/s, is the rightmost digit in the base å expansion of n. Next, divide qsby b

to obtain

qo:bqt*at, 0<a1<b.

We see that q is the second digit from the right in the base b expansion of ¡2. Continue

this process, successively dividing the quotients by ó, obtaining additional base b digits as

the remainders. This process terminates when we obtain a quotient equal to zero.

EXAMPLE 3 Find the base 8, or octal, expansion of Q2345)rc.

Solution: First, divide 12345 by 8 to obtain

12345:8. 1543 + 1.

Successively dividing quotients by 8 gives

1543:8.192+1,
192:8.24 + 0,

24:8.3+0,
3:8.0*3.

Since the remainders are the digits of the base 8 expansion o112345,it follows that

(12345)rc: (30071)s.

Find the hexadecimal expansion of (177130)16.

Solution: First divide 111130 by 16 to obtain

177130: 16. 11070 + 10.

.::tExtfa. 
-, 

¡, ,'. ¡

tì.:iíia¡npldó..."

EXAMPLE 4



yb

-52

hat
are

.ce.

)nt
a

¡its

eb
t is,

1Ue

SAS

2-53 2.5 Integers and Algorithms 171

Successively dividing quotients by 16 gives

11070: 76.691 + 14,

691:76.43+3,
43:76.2+Il,
2: 16.0 +2.

Since the remainders are the digits of the hexadecimal (base 16) expansion of (I77I30)rc,
it follows that

(177130)10 : (2B3EA)ro.

(Recall that the integers 10, 11, and 14 correspond to the hexadecimal digits A, B, and E,
respectively.) <

Find the binary expansion of (241)rc.

Solution: First divide 241by 2 to obtain

241 :2 . 120 + l.

Successively dividing quotients by 2 gives

120 :2. 60 + 0,

60 :2. 30 + 0,

30 :2. 15 + 0,

15:2.7+1,
7:2.3+1,
?-).1J-1
I:2.0+1.

Since the remainders are the digits of the binary (base 2) expansion of (241)rc,it follows
that

(241)rc: (11110001)2. <

The pseudocode given in Algorithm 1 flnds the base á expansion (aut . . .aßs)b of
the integer n.

EXAMPLE 5

ALGORITHM I Constructing Base b Expansions.

procedure base b expansion(n: positive integer)
q::n
k ::0
while q f 0
begin

0¡, i: q mod á
q :: lqlb)
k::k*I

end {the base b expansion of nis (a¡r-1 ..'apùa}



TABLE 1 Hexadecimal, Octal, anil Binary Representation of fhe Integers 0 through 15.

1511 t2 13 l47 8 9 103 4 5 6f)ecirnal 0 1 2

T) E FA B C5 6 7 8 ()
0 1 2 3 4Hexadecilnal

14 15 16 flt0 11 12 134 5 6 70 1 2 3Octal

1 100 1101 1110 11111 001 t0t 0 101 1100 101 110 111 I 0000 1 l0 11Binary
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In Algorithm 1,4 represer.rts the quotient obtained by successive divisions by b, starting

with 4 : n.The digits in the base å expansion are the remainders of these divisions and

are given by 4 mod å. The algorithrn terminates when a quotient 11 : 0 is reached.

Remark: Note that Algorithm 1 can be thought of as a greedy algorithm.

Conversion between binary and hexadecimal expansions is extremely easy because

each hexadecimal digit corresponds to a block of four binary digits, with this correspon-

dence shown in Table 1 without initial 0s shown. (We leave it as Exercises 11 and 12

at the end of this section to show that this is the case.) This conversion is illustrated in

Example 6.

Find the hexadecirnal expansion of (11 1110 1011 1100)2 and the binary expansion of

(A8D)16.

SolLttion: To convert (11 1110 1011 1100)2 into hexaclecimal notation we group the binary

cligits i¡to blocks of four, adding initial zeros at the start of the leftmost block if necessary.

These blocks are 0011,1110,1011,and 1100,which correspond to the hexadecimal digits

3, E, B, and C, respectively. Consequently, (11 1110 101 1 1100)2 : (3EBC) 16'

To convert (A8D)ro into binary notation,we replace each hexadecimal digit by a

block of four binary digits. These blocks are 1010,1000,1101. Consequently, (A8D)16 :
(1010 1000 1101)2. <

ALGORITHMS FOR INTEGER OPERATIONS

The algorithms for performing operations with integers using their binary expansions are

extremely important in computer arithmetic. We will describe algorithms for the additiotr

and the multiplication of two integers expressecl in binary notation. We will also analyze

the computational complexity of these algorithms, in terms of the actual number of bit

operations used. Throughout this discussion, suppose that the binary expansions of a and

b are

e : (ct,,,1ct,, 2. .'ctlcto)2, b - (bu-þ,t-2"'bþo)2,

so that a a¡d b each have n bits (putting bits equal to 0 at the beginning of one of these

expansions if necessary).

We will measure the complexity of algorithms for integer arithmetic in terrns of tl.re

number of bits in these numbers.

Consider the problem of aclcting two integers in binary notation. A procedure to

perform addition can be based on the usual metl.rocl for adding numbers with pencil ancl

paper. This methocl proceeds by adcling pairs of binary digits together with carries, whelr

they occur, to compute the surn of two integers. This procedure will now be specified in

detail.

EXAMPLE 6
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To add a and b, first add their rightmost bits. This gives

aolbo:co'2*so,
where s6 is the rightmost bit in the binary expansion of a * b and cs is the carry, which
is either 0 or 1. Then add the next pair of bits and the carry,

at I bt + co : ct'21 st,

where s1 is the next bit (from the right) in the binary expansion of a * b, and c1 is the
carry. Continue this process, adding the corresponding bits in the two binary expansions
and the carry, to determine the next bit from the right in the binary expansion of a * b.
At the last stage, add an-1, bn-1, and cn-2 Lo obtain cn-t . 2 -l sn-1. The leading bit of
the sum is sn : c,,- 1 . This procedure produces the binary expansion of the sum, namely,
a * b : (snsn-1sr_2. . . srso)2.

EXAMPLE 7 Add o: (Ill0)2andb: (1011)2

111
1110
1011

Solution: Following the procedure specified in the algorithm, f,rst note that

aolbo:0-i-1:0.2+I,

so that c0 : 0 âûd sg : 1. Then, since

at lbt*co - I + 1 +0: 1. 2+0,

it follows that c1 : 1 and sr : 0. Continuing,

qz * bz + cl : 1 + 0 + I : 1. 2 |_0,

so that cz : I and s2 : 0. Finally, since

az I bz I cz- 1 + 1 + 1 : 1' 2+ 1,

it follows fhaf ca : I and s3 : 1. This means that sa - c3 : l.Therefore, s : a + b :
(1 1001)2. This addition is displayed in Figure 1. <

The algorithm for addition can be described using pseudocode as follows.

11001
FIGUREl Adding
(1110)2 and (1011)2.

ALGORITHM z Addition of Integers.

procedure ødd(a, b: positive integers)

{the binary expansions of a and b are (ar-1an-2. . .apo)z
and (bn- þ n-z . . . b þùz,respectively]

cl:0
forj::}ton-l
begin

d :: L(a¡ + b¡ + c)12)
sj:.:aj-fb¡*c-2d
^,_ )L,-U

end
sn::c
{the binary expansion of the sum is (snsr-1 . . .so)z}
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Next, the number of additions of bits used by Algorithm 2 will be analyzed.

EXAMPLE 8 How many additions of bits are required to use Algorithm2 to add two integers with n
bits (or less) in their binary representations?

Solution: Two integers are added by successively adding pairs of bits and, when it occurs,
a carry. Adding each pair of bits and the carry requires three or fewer additions of bits.
Thus, the total number of additions of bits used is less than three times the number of bits
in the expansion. Hence, the number of additions of bits used by Algorithm 2 to add two
n-bit integers is O(n ). <

Next, consider the multiplication of two n-bit integers a and ó. The conventional
algorithm (used when multiplying with pencil and paper) works as follows. using the
distributive law, we see that

ab : a(bo2o i bQ1+ ." + bn-t2"-1)

: a(b020) * a(bQ1) +...+ a(b,-12-1).
Wecan compuleab usingthis equation.Wefirstnote thatab¡ : aif b j : I andab j : O

if b j : 0. Each time we multiply a term by 2, we shift its binary expansion one place
to the left and add a zero at the tail end of the expansion. Consequently, we can obtain
@b)2i by shifting the binary expansion of ab¡ j places to the léft, adding j zero bits
at the tail end of this binary expansion. Finally, we obtain ab by adding the n integers
ab¡2i,j :0, 1,2,...,n - l.

This procedure for multiplication can be described using the pseudocode shown as
Algorithm 3.

EXAMPLE 9

Example 9 illustrates the use of this algorithm.

Find the product ofa : (110)2 andb : (101)2.

Solution: First note that

abs.20: (110)2 .l .20: (110)2,

afu.2r: (110)z .0.21: (0000)2,

ALGORITHM e Multiplying Integers.

procedure multiply(a, á: positive integers)

{the binary expansions of a and b are (an-1ar-2
and (br- 1b,-z . . . b þo)z,respectively)

for j :: Ùton - 1

begin
if b j : Tthenc¡ :: ø shifted j places
else c; :: 0

end

{co, ct, ..., cn*t are the partial products}
p ::0
forj::}ton-l

p::p*c¡
{p is the value of abl

apo)z
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and

ctb2.22: (110)z 'l'22: (11000)2.

To find the product, add (110)2, (0000)2, and (11000)2. carrying out these additions (using

Algorithm 2, including initial zero bits when necessary) shows that ab : (1 1110)2. This

multiplication is displayed in Figure 2. <

Next, we determine the number of additions of bits and shifts of bits used by Algo-

rithm 3 to multiply two integers.

EXAMPLE 10 How many additions of bits and shifts of bits are used to multiply a and b using Algo-

rithm 3?

Solution: Algorithm 3 computes the products of a and b by adding the partial products

c0,c1,c2,...,andcr-1.Whenbj:I,w.computethepartialproductc;byshiftingthe
binaryexpansionofajbits.whenb;:0,noshiftsarerequiredsincec;:0'Hence'to
f,nd allr¿ of the integers ab¡2J 

' 
j :0,1' "'' tr - r'requires atmost

0+ 1+2+"'ln-l
shifts. Hence, by Example 4 in Section 2.2 the number of shifts required is O (n2).

To add the integers ab¡ ftomj : 0 to j : n - 1 requires the addition of an¡z-bit

integer,an(n*l)-bitinteger,..,,anda(2n)-bitinteger.weknowfromExampleSthat
each of these additions re-qr,ires O (n) additions of biis. Consequently' a total of O (n2)

additions of bits are required for all n additions. <

Surprisingly, there are more efficient algorithms than the conventional algorithm for

multiplying ini"g"rr. One such algorithm, which uses O lntsas, bit operations to multiply

n-bit numbers, will be described in Section 6.3.

Givenintegersaand cl,d > 0,wecanfindq: adivd andr: amoddusing
Algorithm 4. In this algorithm, when ø is positive we subtract d froma as many times as

necessary until what is teft is less than d.T\e number of times we perform this subtrac-

tion is the quotient and what is left over after all these subtractions is the remainder.

Algorithm 4 also covers the case where a is negative. It finds the quotient 4, and remain-

dei r when la I is divided by d and when r > 0, uses these to find the quotient -(q + l)
and remaind er d - r when ø is divided by d. We leave it to the reader (Exercise 55) to

show that, assuming that a > d, this algorithm uses o (q loga) bit operations.

There are more effrcient algorithms than Algorithm 4 for determining the quotient

e : adiv d and the remaindeÍ r : amod d when a positive integer ø is divided by a

positive integer d (see [Kn98] for details). These algorithms require O (log a ' log d) bit

operations. If both of the binary expansions of a and d conlaitt n or fewer bits, then we

cå.r replu"e log a . log d by n2 .ihi, -"u.t, that we need O (n2) bit operations to find the

quotient and remainder when ø is divided by d.

MODULAR EXPONENTIATION

In cryptography it is important to be able to efficiently frnd b" mod rn, wher e b,n, and m

are large integers. It is impractical to first compute b" and then find its remainder when

divided by ra becaus e b' wlll be a huge number. Instead, we can use an algorithm that

employs the binary expansion of the exponent n, s a! lt : (at-t . . ' alas)2.The algorithm

-56

hn

urs,

rits.

bits

:wo

,nal

the

-0
ace

lain
bits

lefs

nas



176 2 /T}re Fundamentals: Algorithms, the Integers, and Matrices 2-58

successively finds å mod m, b2 moù m, ba mod, m,...,b20-t mod m aîd, multiplies
together those terms bzt mod m where aj : l,f,nding the remainder of the product
when divided by m affer each muttiplication. Pseudocode for this algorithm is shown in
Algorithm 5.

We illustrate how Algorithm 5 works in Example 11.

EXAMPLE 11 Use Algorithm 5 to find 26aa mod.645.

solution: Algorithm5initiallysetsx : \andpower:zmod,645:2. Inthecomputation
of 26aa mod645, this algorithm determines 22i mod.645 for j : 1,2,. . . , 9 by successively
squaring and reducing modulo 645.If a¡ : I (where a; is the bit in the jth position in the
binary expansion of 644),it multiplies the current value of x by 22i mod 645 andreduces
the result modulo 645.Here are the steps used:

ALGORITHM4 Computing div and mod.

procedure division algorithm(a: integer, d: positive integer)
q ::0
," ._ I ^tr .- lul
while r > d
begin

f::r-d
q::qI1

end
if (t < 0 and r > 0 then
begin

r::d-r
q :: -(q -f I)

end

{q : adiv d is the quotient, r : a modd is the remainder}

ALGORITHM 5 Modular Exponentiation.

procedure mo dular exp onentiatio n(b: integer, n - (a¡r, 
1 a¡r_2

m: positive integers)
-. ,_ 1¡ .- I

power :: b mod m
fori::0tofr-1
begin

if a¡ : 1 then x :- (x. power) mod m
power :- (power . power) modl m

end

{x equals b'l mod, m}

at0o)2,
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¡ = 0: Because ag : Q,we have x : I and power : 22 : 4 mod 645 : 4;

¡ = 1: Becaus: a1 : Q,wehave x : I andpower : 42 : 16mod 645 : L6;

¡ =2:Becausea2: \,we have x: l.16mod 645: 16aîdpower:162:256mod645:256.,

; = 3: Because a3 - O,we have x : 16 and power :2562 :65,536 mod 645 - 391;

; = 4: Because a4 : Q,we have x : 16 and power : 3912 : 152,881 mod645 : 1"6;

¡ = 5: Becaus: a5 : Q,we have x : 16 aîd power : 162 :256 mod 645 :256;
¡ = 6: Because t16: Q,we have x : 16 and power :2562 :65,536 mod 645 :391;
i =7:BecausaaT: l,wefind thatx: (16.391) mod645 :451 andpower:3912:152,881 mod645:16;
; = 8: Because aB : 0,we have x : 45I and power : 162 :256 mod 645 :256;
¡ = Ç: Because as : l,we flnd that ¡ : (451 .256) mod 645 : 1.
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This shows that following the steps of Algorithm 5 produces the result 26aa mod,645 : L

Algorithm 5 is quite efficient; it uses O((logm)2logn) bit operations ro f,nd
b" mod m (see Exercise 54).

THE EUCLIDEAN ALGORITHM

The method desc¡ibed in Section 2.4 for computing the greatest common divisor of two
integers, using the prime factorizations of these integers, is inefficient. The reason is that
it is time-consuming to find prime factorizations. We will give a more efficient method
of flnding the greatest common divisor, called the Euclidean algorithm. This algorithm
has been known since ancient times. It is named after the ancient Greek mathematician
Euclid, who included a description of this atgorithm in his Elements.

Before describing the Euclidean algorithm, we will show how it is used to flnd
gcd(91, 287). First, dlvide 287, the larger of the two integers, by 91, the smaller, to ob-
tain

287:9I.3+1,4.

Any divisor of 91 and 287 must also be a divisor of 287 - 9L . 3 :14. Also, any divisor of
91 and 14 must also be a divisor of 28'7 :91 . 3 + 14. Hence, the greatest common divisor
of 91 and 287 is the same as the greatest common divisor of 91 and 14. This means that the
problem of f,nding gcd(91, 287) has been reduced to the problem of f,nding gcd(91, 14).

Next, divide 9Iby 14 to obtain

9l : 14'6 +1.

Since any common divisor of 91 and 14 also divides 91 - 14.6:7 and any common
divisor of 14 and 7 divides 91, it follows that gcd(91, 14) : gcd(14,7).

EUCLID (C, 325-265 e.c.s.) Euclid was the autho¡ of the most successful mathematics book ever
written, the Elements, which appeared in ove¡ 1000 diffe¡ent editions from ancient to modern times. Little
is known about Euclid's life, other than that he taught at the famous academy at Alexandria. Apparently,
Euclid did not stress applications. When a student asked what he would get by learning geometry, Euclid
explained that knowledge was worth acquiring fol its own sake and told his servant to give the student a
coin "since he must make a proflt from what he learns."

: . ::
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Continue by dividing 14by 7,to obtain

1.4 :7 ' 2.

Since 7 divides 14, it follows that gcd(14, 7) :7 . Furthermore, because gcd(287 ,91) =
gcd(91, 14) : gcd(I4,1) :7, the original problem has been solved.

We now describe how the Euclidean algorithm works in generality. We will use suc-

cessive divisions to reduce the problem of f,nding the greatest common divisor of two
positive integers to the same problem with smaller integers, until one of the integers
is zero.

The Euclidean algorithm is based on the following result about greatest common
divisors and the division algorithm.

LEMMA L Let a : bq * r, where a, b, e,and r are integers. Then gcd(a, b) : gcd(b, r).

Proof: If we can show that the common divisors of a and b are the same as the common
divisorsof b andr,wewillhaveshown thaf gcd(a,b): gcd(b, r),sincebothpairsmust
have the same greatesl common divisor.

So suppose that d divides both a and å. Then it follows that d also divides a - bq : ,
(fromTheorem 1 of Section2.4).Hence, any common divisor of a and å is also a common
divisor of b and r.

Likewise, suppose that d divides both b and r.Then d also divides bq Ir: a.
Flence, any common divisor of å and r is also a common divisor of a and b.

Consequently,gcd(a,b) : gcd(b,r). <

Suppose that ø and á are positive integers with ø > b.Let rs : a andrl : b. When
we successively apply the division algorithm, we obtain

ro :rtqtlrz 0<12<11,

11 :r2q2+ry 0<13<12,

fn-2:rr-1q,r-1 Ir,, 0 <r, ltn-l,

fn-I: fnQn.

Eventually a remainder of zero occurs in this sequence of successive divisions, since the
sequenceof remainderse:r0 > rt > 12> ...> 0cannotcontainmorethanøterms.
Furthermore, it follows from Lemma 1 that

gcd(a, b) : gcd(rs,r1) : gcd(r1, rz) :' .. : gcd(rn 2, rn t)

- gcd(r,r-1,r,r): gcd(rr,0): rn.

Hence, the greatest common divisor is the last nonzero remainder in the sequence of
divisions.

EXAMPLE 12 Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.
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Solution: Successive uses of the division algorithm give:

662:414'1+248
414:248.1+166
248:166.1+82
166:82.2+2
82:2 ' 41.

Hence, gcd(414,662) :2, since 2 is the last nonzero remainder.

The Euclidean algorithm is expressed in pseudocode in Algorithm 6.

In Algorithm 6, the initial values of x and y are a and b,respectively. At each stage of the
procedure, x is replaced by y, and y is replaced by x mod y, which is the remainder when
x is divided by y. This process is repeated as long as y + 0. The algorithm terminates
when y : 0, and the value of x at that point, the last nonzero remaindèr in the procedure,
is the greatest common divisor of a and, b.

We will study the time complexity of the Euclidean algorithm in Section 3.4, where
we will show that the number of divisions required to find the greatest common divisor
of ø and å, where a > b,is O(log å).

ALGORITHM a The EuclideanAlgorithm.

procedure gcd(a, á: positive integers)
X::Q
y::b
while y I 0
begin

r::xmody
Y t- 1'

Yi:r
end {gcd(a, b) ís xl

Exercises
1. Convert these integers from decimal notation to bi-

nary notation.
a)231 b) 4532 c\97644

2. Convert these integers from decimal notation to bi-
nary notation.

a)32I b)1023 e)I00632
3. Convert these integers from binary notation to deci-

mal notation.
a) 1 1111
c) 1 0101 0101

4. Convert these integers from binary notation to deci-
mal notation.

a) 1 1011 b) 10 1011 0101
c) 11 1011 1110 d) 111 1100 0001 1111

5. Convert these integers lrom hexadecimal notation to
binary notation.

a) 80E b) 13548
c) ABBA d) DEFACED

6. Convert (BADFACED)16 from its hexadecimal ex-
pansion to its binary expansion.

b) 10 0000 0001
d) 110 1001 0001 0000
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7. Convert (ABCDEF)16 from its hexadecimal expan_
sion to its binary expansion.

8. Convert each of these integers from binary notation
to hexadecimal notation.

a) 1111 0111
b) 10i0 1010 1010
c) 111 0111 0111 0111

9. Convert (1011 0111 1011)2 from its binary expansion
to ils hexadecimal expansion.

10. Convert (1 1000 0110 0011), from its binary expan_
sion to its hexadecimal expansion.

11. Show that the hexadecimal expansion of a positive
integer can be obtained from its binary expansion by
grouping together blocks of four binary digits, adding
initial digits if necessary, and translating each block
of four binary digits into a single hexadecimal digit.

12. Show that the binary expansion of a positive integer
can be obtained from its hexadecimal expansion by
translating each hexadecimal digit into a block of four
binary digits.

13. Give a simple procedure for converting from the bi_
nary expansion of an integer to its octal expansion.

14. Give a simple procedure for converting from the octal
expansion of an integer to its binary expansion.

15. Convert (7345321)8 to its binary expansion and
(10 1011 1011)2 to irs ocral expansion.

16. Give a procedure for converting from the hexadec-
imal expansion of an integer to its octal expansion
using binary notation as an intermediate step.

17. Give a procedure for converting from the octal ex_
pansion of an integer to its hexadecimal expansion
using binary notation as an intermediate step.

18. Convert (12345670)8 to its hexadecimal expansion
and (ABB093BABBA)r6 to its octal expansion.

19. Use Algorithm 5 to find 32003 mod 99.
20. Use Algorithm 5 to find 123100r mod 101.
21. Use the Euclidean algorithm to flnd

a) gcd(12, l8). b) gcd(I11,201).
c) gcd(1001, 1331). d) gcd(t2345,54321).
e)gcd(l000,5040). f) gcd(9888,6060).

22. Use the Euclidean algorithm to f,nd
a) gcd(l,5). b) gcd(100, t0t).
c) gcd(123,277). d) gcd(1529, t4039).
e) gcd(t529,14038). Ð gcd(il111, 111111).

23. How many divisions are required to flnd gcd(21, 34)
using the Euclidean algorithm?

24. How many divisions are required to find gcd(34, 55)
using the Euclidean algorithm?

25. Show that every positive integer can be represented
uniquely as the sum of distinct powers of 2. (Hint:
Consider binary expansions of integers.)

26, It can be shown that every integer can be uniquely
represented in the form

et3k I er-t3k-t +'.. + et3 I eo,

where e¡ : -1,0, or 1 for j : 0,1,2, ...,k. Expan-
sions of this type are called balanced ternary expan-
sions. Find the balanced ternary expansions of
a) s. b) 13. c) 37. d) 79.

27. Show that a positive integer is divisible by 3 if ancl
only if the sum of its decimal digits is divisible by 3.

28. Show that a positive integer is divisible by 11 iland
only if the difference of the sum of its decimal dig_
its in even-numbered positions and the sum of iis
decimal digits in odd-numbered positions is divisible
by 11.

29. Show that a positive integer is divisible by 3 if and
only if the difference of the sum of its binary digits
in even-numbered positions and the sum of its binãry
digits in odd-numbered positions is divisible by 3.

One's complement representations of integers are used to
simplify computer arithmetic. To represent positive and
negative integers with absolute value less than 2,,-r , a total
of n bits is used. The leftmost bit is used to represent the
sign. A 0 bit in this position is used for positive integer.s,
and a 1 bit in this position is used for negative integers.
For positive integers the remaining bits are identical to
the binary expansion of the integer. For negative inte_
gers, the remaining bits are obtained by first finding the
binary expansion of the absolute value of the integer, and
then taking the complement of each of these bits, where
the complement of a 1 is a 0 and the complement of a 0
is a 

.l.

30. Find the one's complement representations, using bit
strings of length six, of the following integers.
a)22 b) 31 c) -7 d) -19

31. What integer does each of the following one's com-
plement representations of length five represent?
a) 11001 b) 01101 c) 10001 d) 11111

32. If m is a positive integer less than 2,,- r, how is the one's
complement representation of -m obtained from the
one's complement of m,when bit strings of length n
are used?

33. How is the one's complement representation of the
sum of two integers obtained from the one,s compie-
ment representations of these integers?

34. How is the one's complement representation of the
difference of two integers obtained from the one's
complement representations of these integers?

35. Show that the integer m with one,s complement rep-
resentation (au ta,_2. . .cttch) can be found using the
equation m : -aû t(2u-t - l) + a,,_22,,-2 +...+
at '2 * ao.

Twots complement representations of integers are also
used to simplify computer arithmetic and are used more
commonly than one's complement representations. To
represent an integer ¡ with -2u t <x<2,-t -l for
a specified positive integer n, a toTal of n bits is used.
The leftmost bit is used to represent the sign. A 0 bit

I
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in this position is used for positive integers, and a 1 bit
¡¡ this position is used for negative integers, just as in
one's complement expansions. For a positive integer, the
remaining bits are identical to the binary expansion of
the integer. For a negative integer, the remaining bits are

the bits of the binary expansion ol2' | - lxl. Two's com-
plement expansions of integers are often used by com-
puters because addition and subtraction of integers can
be performed easily using these expansions, where these
integers can be either positive or negative.

36. Answer Exercise 30, but this time find the two's com-
plement expansion using bit strings of length six.

37. Answer Exercise 31 if each expansion is a two's com-
plement expansion of length flve.

38. Answer Exercise 32 for two's complement expan-
sions.

39. Answer Exercise 33 for two's complement expan-
sions.

40. Answer Exercise 34 for two's complement expan-
sions.

41. Show that the integer ¡z with two's complement rep-
resentation (an ß,-2. . .aúo) can be found using the
equationm : -a,_1 .2 r la, 22,1-2 +, ,.+ar,2+ao.

42. Gwe a simple algorithm for forming the two's com-
plement representation of an integer from its one's
complement representation.

43. Sometimes integers are encoded by using four-digit
binary expansions to represent each decimal digit.
This produces the binary coded decimal form of the
integer. For instance,791 is encoded in this way by
011110010001. How many bits are required to repre-
sent a number with ¡¿ decimal digits using this type of
encoding?
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A Cantor expansion is a sum of the form

a,,nl J a,, 1(iz - l)! +... + a22! J a1ll,

wherea¡ is an integerwith 0 < a¡ < i Tor i : l, 2,..., n.

44. Find the Cantor expansions of
a) 2. b) 7. c) 19.
d) 87. e) 1000. f) 1,000,000.

*45. Describe an algorithm that finds the Cantor expan-
sion of an integer.

*46. Describe an algorithm to add two integers from their
Cantor expansions.

47. Add (10111)2 and (11010)2 by working rhrough each
step of the algorithm for addition given in the text.

48. Multiply (1 110)2 and (1010)2 byworkingthrough each
step of the algorithm for multiplication given in the
text.

49. Describe an algorithm for finding the difference of
two binary expansions.

50. Estimate the number of bit operations used to sub-
tract t\ryo binary expansions.

51. Devise an algorithm that,given the binary expansions
of the integers a and å, determines whether a > b,
a:b,ora<b.

52. How many bit operations does the comparison algo-
rithm from Exercise 51 use when thelarger of a andb
has n bits in its binary expansion?

53. Estimate the complexity of Algorithm 1 for finding
the base å expansion of an integer n in terms of the
number of divisions used.

x54. Show that Atgorithm 5 uses O ((log m)z logn) bit op-
erations to fìnd å" mod m.

55. Show that Algorithm 4 uses O(qloglal) bir opera-
tions, assumin g that a > d.

G Applications of Number Theory

INTRODUCTION

Number theory has many applications, especially to computer science. In Section 2.4
we described several of these applications, including hashing functions, the generation
of pseudorandom numbers, and shift ciphers. This section continues our introduction to
number theory, developing some key results and presenting two important applications:
a method for performing arithmetic with large integers and a recently invented type of
cryptosystem, called a public key system.In such a cryptosystem, we do not have to keep
encryption keys secret, since knowledge of an encryption key does not help someone
decrypt messages in a realistic amount of time. Privately held decryption keys are used
to decrypt messages.

Before developing these applications, we will introduce some key results that play
a central role in number theory and its applications. For example, we will show how
to solve systems of linear congruences modulo pairwise relatively prime integers using
the Chinese Remainder Theorem, and then show how to use this result as a basis for


