
,.1 for
Iers.
algo-

:.1 for
egers.

algo-
t.1 for
equal

algo-
;.1 for
r than

algo-
;.1 for
re im-

ms of
n Sec-
more

ms of
:9in
gisa

't (see

sort n
ate of
num-

rplex-
rd the
3rtion
n Sec-

hange
:nnies
mpar-

in the
: used

of the
teger.

;ed in
list to
)sitive

o Ex-

lmble

2_54
2-35

2.4The Integers and Division 153

ß
The Integers and Division

INTRODUCTION

The part of discrete mathematics involving the integers and their properties belongs to
the branch of mathematics called number theory. This section is the beginning of a three-
section introduction to number theory. In this section we will review some basic concepts
of number theory, including divisibility, greatest common divisors, and modular arithmetic.
In Section 2.5 we will describe several important algorithms from number theory, tying
together the material in Sections 2.1 and 2.3 on algorithms and their complexity with
the notions introduced in this section. For example, we will introduce algorithms for
finding the greatest common divisor of two positive integers and for performing computer
arithmetic using binary expansions. Finally, in Section 2.6,we will continue our study of
number theory by introducing some important results and their applications to computer
arithmetic and cryptology, the study of secret messages.

The ideas that we will develop in this section are based on the notion of divisibility.
one important concept based on divisibility is that of a prime number. A prime is an
integer greater than 1 that is divisible only by 1 and by itself. Determining whether
an integer is prime is important in applications to cryptology. An important theorem
from number theory, the Fundamental Theorem of Arithmetic, asserts that every positive
integer can be written uniquely as the product of prime numbers. Factoring integers
into their prime factors is important in cryptology. Division of an integer by a positive
integer produces a quotient and a remainder. Working with these remainders leads to
modular arithmetic, which is used throughout computer science. We will discuss three
applications of modular arithmetic in this section: generating pseudorandom numbers,
assigning computer memory locations to files, and encrypting and decrypting messages.

DIVISION
'when one integer is divided by a second, nonzero integer, the quotient may or may not
be an integer. For example, l2/3 : 4 is an integer, whereas ll /4 : 2.7 5 is not. This
leads to the following def,nition.

DEFINITION 1 If a and å are integers with a f O,we say that q divides å if there is an integer c
such that b : ac.when a divides b we say that a is a factorof b and that å is a
multiple of a.Thenotation a I bdenotesthata divideså. lvewrite a I bwhena
does not divide b.

Remørh: 'we can express ø | å using quantifiers as 1c(ac : b), where the universe of
discourse is the set of integers.

In Figure 1 a number line indicates which integers are divisible by the positive inte-
ger d.

EXAMPLE I Determine whether 3 l7 andwherher 3 l lZ.
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-3d -2d -d 0 d 2d

FIGURE 1 Integers Divisible by the Positive Integer d.

3d

EXAMPLE 2

Solution: It follows that3 [ T,since T13isnoT an integer. On the other hand,3 | I2
since 72f 3 : 4. <

Letn and d be positive integers. How many positive integers not exceedingn are divisible
t:y d?-,:'.Axt/å .::. ,

:l :Éiâúrpld'.'

Solution: The positive integers divisible by d are all the integers of the form dk, where k is a

positive integer. Hence, the number of positive integers divisible by d that do not exceed

n equals the number of integers fr with 0 < dk I n, or with 0 < k < nld. Therefore,
there are ln ld ) positive integers not exceedin g n lhat are divisible by d. <

Some of the basic properties of divisibility of integers are given in Theorem 1.

THEOREM 1 Let a, b, and c be integers. fhen

l. íf a I b anda I c,then a | (b * c);

2. it a | ä, then a I bc for all integers c;

3. if a I b and b I c,then a I c.

Proof: To prove (1) suppose thala I b and a I c. Then, from the definition of divisibility,
itfollows that there are integers s and / with b : as and c : et.Hence,

b I c :0s + at : a(s I t).

Therefore, ø divides å f c. This establishes part (1) of the theorem. The proofs of parts (2)
and (3) are left as exercises for the reader. <

Theorem t has this useful consequence.

COROLLARY 1 If. a,b,and c are integers such that a I b and a I c,then a I mb * nc whenever m

and n are integers.

Proof: By part (2) of Theorem 1 it follows that a I mb and a I nc whenever m and n
are integers. By part (1) of Theorem 1 it follows that a I mb + nc. <

PRIMES

Every positive integer greater than 1 is divisible by at least two integers, since a positive
integer is divisible by 1 and by itself. Integers that have exactly two different positive
integer factors are called primes.
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DEFINITION 2 A positive integer p greater than f. is called prime if the only positive factors of p
are L and p. A positive integer that is greal.er than L and is not prime is called
composite.

Retnqrh: The integer n is composite if and only if there exists an integer a such that
alnandl<a<n.

EXAMPLE 3 The integer 7 is prime since its only positive factors are L and 7, whereas the integer 9 is
composite since it is divisible by 3. <

The primes less than 100 are 2,3,5,7 ,1L,13,I7,19,23,29,31,31 ,41,43,47,53,59,61,
67,71,73,79,83,89,and97.In Section 6.6 we introduce a procedure, known as the sieve
of Eratosthenes, which can be used to find all the primes not exceedin g an integer n.

The primes are the building blocks of positive integers, as the Fundamental Theorem
of Arithmetic shows. The proof will be given in Section 3.3.

THEOREM 2 THE FI-INDAMENTAL THEOREM OF ARITHMETIC Every positive integer
greater than 1 can be written uniquely as a prime or as the product of two or more
primes where the prime factors are written in order of nondecreasing size.

Example 4 gives some prime factorizations of integers.

EXAMPLE 4 The prime factorizations of 100, 641,999,and1024 are given by

100 : 2 .2.5 .5 :2252,

641 :64I,
999 :3 '3 '3 '37 :33 '37,

t¡)A - ) . ) . ) . ) . ) . ) . t . t . ) . 1 - )10

':
. ::::..ßxtÍA ; =, :; : :':

. _ i : r t*ä¡iÍrl-d_S..:,'

It is often important to show that a given integer is prime. For instance, in cryptology
large primes'are used in some methods for making messages secret. One procedure for
showing that an integer is prime is based on the following observation.

THEOREM 3 If.n is a composite integer, then ¡¿ has a prime divisor less than or equal to Jn

Proofi If n is composite, it has a factor ø with 1 < a < n.Hence,n : ab,whereboth a
andåarepositiveintegersgreaterthanl.Weseethata<Jiorb<Ji,sinceotherwise
ab . 

"fr. 
. Jn : n. Hence, n has a positive divisor not exceeding 

"/t. 
This divisor is

either prime or, by the Fundamental Theorem of Arithmetic, has a prime divisor. In either
casqn has a prime divisor less than or equal to Jn. <

From Theorem 3, it follows that an integer is prime if it is not divisible by any prime less

than or equal to its square root. In the following example this observation is used to show
that 101 is prime.
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EXAMPLE 5 Show that 101is Prime'

Solution: The only primes not exceeding.ú01 are2,3,5, and 7. Since 101 is not divisible

by 2,3,5, or 7 (the quotient of 101 and each of these integers is not an integer), it follows

that 101 is Prime. <

Since every integer has a prime factorization, it would be useful to have a procedure

for finding this prime factorization. Consider the problem of finding the prime facfotiza-

tion of ¡2. Begin by dividing n by successive primes, starting with the smallest príme,2'If n

has a prime iactor, then byTheorem 3 a prime factor p not exceedi"g 
"ñ 

will be found.

So, if no prime factor not exceedin C Jn is found, flten n is prime. Otherwise, if a prime

factor p ls found, continue by factoring nlp.Note that nlp has no prime factors less

thanp. Again,lf nlp has no prime factor greater than or equal top and not exceeding

its square root, then it is prime. Otherwise, if it has a prime lacfor q, continue by factor-

ingnl@ù.This procedure is continued until the factorization has been reduced to a

prime. This procedure is illustrated in Example 6.

EXAMPLE 6

I ; 'l ; li¡i!6 ¡1.;r1¡.:

Find the prime factorization of 7001 .

Solution: To f,nd the prime factorization of 7007,f,rst perform divisions of 100'7 by suc-

cessive primes, beginning with 2. None of the primes 2,3,and 5 divides 7007. However, T

divides7007,with7007l7: l00l.Next,dividel00lbysuccessiveprimes,beginningwithT.
It is immediately seen that I also divides 1001, since l00I/1 :143' continue by

dividing 1,43 by successive primes, beginning with 7. Although 7 does not di-

vide 14ã,11 does divide 143, and l43llI: 13. Since 13 is prime, the procedure is com-

pleted. Itfollows thattheprimefactorizationof 7007is 7 '7 .ll'13:'12 '11'13. <

prime numbers were studied in ancient times for philosophical reasons. Today, there

are highly practical reasons for their study. In particular, large primes play a crucial role

in cryptography, as we will see in Section 2.6.

THE INFINITUDE OF PRIMES It has long been known that there are inflnitely

many primes. We.will prove this fact using a proof given by Euclid in his famous mathe-

matics text, the Elements.

THEOREM 4 There are infinitely many primes.

Proofi We will prove this theorem using a proof by contradiction.'We assume that there

are only finitely many primes, P1, P2, . . . ' Pn. Let

Q: ptpz'..pn11.

By the Fundamental Theorem of Arithmeti c, Q is prime or else it can be written as the

pioductof twoormoreprimes.However,noneof theprimesP; divides Q,forif pi I Q'

in"n p¡ divides Q - ptpz..'pn:1.This is acontradictionbecausewe assumedthat

w" nauL listed all the primes. Consequently, there are infinitely many primes. (Note that

in this proof we do not state that Q is prime!) <

Since there are inflnitely many primes, given any positive integer there are primes

greater than this integer. There is an ongoing quest to discover larger and larger prime
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ì: :-¡Iiinks¡1r:.,ìj'

numbers;for almost all the last 300 years, the largest prime known has been an integer of
the special form2p - 1, where p is also prime. Such primes are called Mersenne primes,
after the French monk Marin Mersenne, who studied them in the seventeenth century.
The reason that the largest known prime has usually been a Mersenne prime is that there
is an extrerirely efficient test, known as the Lucas-Lehmer test, for determining whether
2p - | is prime. Furthermore, it is not currently possible to test numbers not of certain
special forms anywhere near as quickly to determine whether they are prime.

EXAMPLET Thenumbers 22-I:3,23 -1- 1,and,2s -1- 3l areMersenneprimes,while
2tI - 7 :2041 is not a Mersenne prime since 2047 :23 . 89. <

Progress in f,nding Mersenne primes has been steady since computers were invented.
As of mid-2002, 39 Mersenne primes were known, with eight found since 1990. The largest
Mersenne prime known (as of mid-20 02) is 2tz'+eø,0 17 - I, anumber with over four million
digits, which was shown to be prime in late 2001. A communal effort, the Great Inter-
net Mersenne Prime Search (GIMPS), has been organízed to look for new Mersenne
primes. By the way, even the search for Mersenne primes has practical implications. One
quality control test for supercomputers has been to replicate the Lucas-Lehmer test that
establishes the primality o[ a large Mersenne prime.

THE DISTRIBUTION OF PRIMES Theorem 4 tells us that there are infinitely
many primes. However, how many primes are less than a positive number r ? This question
interested mathematicians for many years; in the late eighteenth century mathematicians
produced large tables of prime numbers to gather evidence concerning the distribution
of primes. Using this evidence, the great mathematicians of the day, including Gauss and
Legendre, conjectured, but did not prove,Theorem 5.

THEOREM 5 THE PRIME NUMBER THEOREM The ratio of the number of primes not ex-
ceeding;r and x flnx approaches L as x grows without bound. (Here lnr is the natural
logarithm of -r.)

.a .'

tl :- i l,inltê:;r1,,:::..1

MARIN MERSENNE (f588-1648) Mersenne was born in Maine, France, into a family of laborers
and attended the College of Mans and the Jesuit College at La Flèche. He continued his education at the
Sorbonne, studying theology from 1609 to 1611. He joined the religious order of the Minims in L61"L, a

group whose name comes from the word minimi (the members of this group considered themselves the
least religious order). Besides prayer, the members of this group devoted their energy to scholarship and
study. In 1612 he became a priest at the Place Royale in Paris; between 1614 and 1618 he taught philosophy
at the Minim Convent at Nevers. He returned to Paris in 1619,where his cell ìn the Minims de I'Annociade
became a place for meetings of French scientists, philosophers, and mathematicians, including Fermat and
Pascal. Mersenne corresponded extensively with scholars throughout Europe, serving as a clearinghouse
formathematical and scientificknowledge,a functionlaterserved bymathematical journals (andtoday also
by the Internet). Mersenne wrote books covering mechanics, mathematical physics, mathematics, music,
and acoustics. He studied prime numbers and tried unsuccessfully to construct a formula representing all
primes. In 1644 Mersenne claimed That 2p - 1 is prime for p : 2,3,5,7 ,L3,1'7 ,19,37,67 ,127 ,257 but is
composite for all other primes less fhan 257 . It took over 300 years to determine that Mersenne's claim
was wrong five times. Specifìcally,2p - I is not prime for p : 67 and p :25'l bu| is prime lor p :61,
p : 87, and p : 107. It is also noteworthy that Mersenne defended two of the most famous men of his
time, Descartes and Galileo, from religious critics. He also helped expose alchemists and astrologers as

frauds.
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,t :'Links'.'.:,'.'
The prime Number Theorem was first proved in 1896 by the French mathematician

Jacques Hadamard and the Belgian mathematician Charles-Jean-Gustave-Nicholas de la

Va[èé-poussin using the theory of complex variables. Although proofs not using complex

variables have been found, all known proofs of the Prime Number Theorem are quite

complicated.
'We can use the Prime NumberTheorem to estimate the odds that a randomly chosen

number of a certain size is prime. The Prime Number Theorem tells us that the number

of primes not exceedin g x can be approximated by x f ln x . Consequently, the odds that

a randomly selected positive integerx is prime.?re approximately (xllnx)lx : l/121.
For example, the oddi that an inte'ger ,teai 101000 ls p.i*e are approxim ately I /ln 101000,

which is approximately I12300. (Of course, by choosing only odd numbers, we double

our chances of finding a Prime.)
Using trial division with Theorem 3 gives procedures for factoring and for primality

testing. However,these procedures are not efficient algorithms;many muchmore practical

and eificient algorithms for these tasks have been developed. Factoring and primality

testing have become important in the applications of number theory to cryptography.

This has led to a great interest in developing efficient algorithms for both tasks. Clever

procedures have been devised in the last 30 years for efficiently generating large primes.

However, even though powerful new factorization methods have been developed in the

same time frame, factoring large numbers remains extraordinarily more time consuming.

Nevertheless, the challenge of factoring large numbers interests many people. There is a

communal effort on the Internet to factor large numbers, especially those of the special

form kn ¡[ 1, where k is a small positive integer and n is a large positive integer (such

numbers are called Cunníngham numbers). At any given time, there is a list of the "Ten

Most Wanted" large numbers of this type awaiting factorization'

THE DIVISIONALGORITHM

When an integer is divided by a positive integer, there is a quotient and a remainder, as

the division algorithm shows.

THEOREM 6 THE DMSION ALGORITHM Let a be an integer and d a positive integer. Then

thereareuniqueintegers qandr,with0 < r l d,suchthat a:dq *r'

Retnarh: Theorem 6 is not really an algorithm. (Why not?) Nevertheless, we use its

traditional name.

DEFINITION 3 In the equality given in the division algorithm,d is called the divisor,a is called the

dividend,q is called the quotient,and r is called the remainder. This notation is used

to express the quotient and remainder:

q:adivd, r:amoùd.

Examples 8 and 9 illustrate the division algorithm.

EXAMPLE 8 Whar are rhe quotient and remainder when 10L is divided by 11?
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Solution: We have

101 :11 '9+2'
Hence, the quotient when 101 is divided by 11 is 9 : 101 div 11, and the remainder is
2 : l0I mod 11. <

EXAMPLE I What are the quotient and remainder when - 1l is divided by 3?

Solution: We have

*11 :3(-4) + t'
Hence, the quotient when - 11 is divided by 3 is -4 : -ll div 3, and the remainder is
I : -11 mod 3.

Note that the remainder cannot be negative. Consequently, the remainder is not -2,
even though

-11:3(-3) -2,
sincer: -2doesnotsatisfyO < r < 3. <

Note that the integer ø is divisible by the integer d if and only if the remainder is
zero when a is divided by d.

GREATEST COMMON DTVISORS AND LEAST
COMMON MULTIPLES

The largest integer that divides both of two integers is called the greatest common divisor
of these integers.

DEFINITION 4 Let ø and å be integers, not both zero. The largest integer d such that d I a and
d I b is called the greatest common divisor of a and þ. The greatest common divisor
ofø and å is denoted by gcd(a,b).

The greatest common divisor of two integers, not both zero, exists because the set of
common divisors of these integers is f,nite. One way to find the greatest common divisor
of two integers is to find all the positive common divisors of both integers and then take
the largest divisor. This is done in the following examples. Later,amore efflcient method
of finding greatest common divisors will be given.

EXAMPLE 10 What is the greatest common divisor of 24 and36?

Solution: The positive common divisors of 24 and 36 are L,2,3, 4, 6, and 12. Hence,
gcd(24,36):12. <

EXAMPLE 11 What is the greatest common divisor of 17 and22?

Solution: The integers I7 ard22have no positive common divisors other than 1, so that
gcd(17,22):1. <

Since it is often important to specify that two integers have no common positive
divisor other than 1, we have the following definition.
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DEFINITION 5 The integers a aîdb are relatively prime iftheir greatest common divisor is 1

EXAMPLE 12 From Example 11 it follows that the integers 1l and 22 ate relatively prime, since

gcd(17, 22): I. <

Since we often need to specify that no two integers in a set of integers have a common

positive divisor greater than 1, we make Definition 6.

DEFINITION 6 The integers Qr, a2, . . . , an arc pairwße relatively prime iÎ gcd(a¡, a;) : 1 when-

everl<i<i<n.

EXAMPLE 13 Determine whether the integers 10,!7,and27 arepaitwise relatively prime and whether

the integers 10, 19, and 24 are pairwise relatively prime'

Solution: Since gcd(I0,17):1, gcd(10' 2l) : l, and gcd(17' 21) :
10, 17, and 21 are pairwise relatively prime.

Since gcd(10 '24) 
:2 > l, we see that 10, 19, and 24 are not

prime.

1, we conclude that

pairwise relatively

Another way to find the greatest common divisor of two integers is to use the prime

factorizations of these integers. Suppose that the prime factorizations of the integers ø

and b, neither equal Ío zero,are

p1,,, b : pbrt pbz, ... pX",

where each exponent is a nonnegative integer, and where all primes occurring in the prime

factorization of either a or b are included in both factorizations, with zero exponents if
necessary. Then gcd(ø, b) is given by

gcd(a, b) : p?i"("t' b1) 
Umin(a2' 

bz) "',min(a"' b"),

where min(x, y) represents the minimum of the two numbers r and y. To show that

this formula for gcã(a, b) is valid, we must show that the integer on the right-hand

side divides both ø and b, and that no larger integer also does. This integer does divide

both a and b, since the power of each prime in the factorization does not exceecl the

power of this prime in either the factorization of a or tha| of b. Further, no larger inte-

g", 
"un 

divide both ø and b,because the exponents of the primes in this factorization

cannot be increased, and no other primes can be included.

EXAMPLE 14 Since the prime factorizations of 120 and 500 are 120 :23'3 '5 and 5OO = 22 '53

greatest common divisor is

gcd(120,500) : 2min(3' 
2) 3min(l' 0) 5min(1' 

3) : 22 30 5t : 20'

Prime factorizations can also be used to find the least common multiple of two

integers.

o: pIt pI'

the
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Tloe least conxmon multiple of the positive integers a and b is the smallest positive
integer that is divisible by both a and b. The least common multiple of a and å is
denoted by \cm(a, b).

The least common multiple exists because the set of integers divisible by both a and b
is nonempty, and every nonempty set of positive integers has a least element (by the
well-ordering property, which will be discussed in Section 3.3). Suppose that the prime
factorizations of a and å are as before. Then the least common multiple of a and b is
given by

lcm(a, b) : p?u*(n'' bt) 
Umax(az' 

bz) . . . rmax(a"' 
b")

where max(x, y) denotes the maximum of the two numbers x and y. This formula is

valid since a common multiple of a and å has at least max(a¡ , å¡ ) factors of p¡ in its prime
factorization, and the least common multiple has no other prime factors besides those
in a and b.

DEFINITION 7

EXAMPLE 15 \What is the least common multiple o1233s72 and2a33?

Solution: 'We have

THEOREM 7

DEFINITION 8

1cm723 3s 72, 24 33 ¡ : 2max(3' 4) 
3 

max (5' 3) 
7 

max(2' 0) - 2\s'72

The following theorem gives the relationship between the greatest common divisor
and least common multiple of two integers. It can be proved using the formulae we have
derived for these quantities. The proof of this theorem is left as an exercise for the reader.

Let a and å be positive integers. Then

ab - gcd(ø, b) .lcm(a, b).

MODUI,AR ARITHMETIC

In some situations we care only about the remainder of an integer when it is divided
by some specified positive integer. For instance, when we ask what time it will be (on a

24-hour clock) 50 hours from now we care only about the remainder when 50 plus the
current hour is divided by 24. Since we are often interested only in remainders, we have
special notations for them.

We have a notation to indicate that two integers have the same femainder when they
are divided by the positive integer rn.

If.a andb are integers and ru is a positive integer,then c is congruentto b modulo mil
r¡ divides ø - å. We use the notation d : b (mod m) to indicate that a is congruent
to b modulo m.If a andb are not congruent modulo n?,we write a t' b (modm).



r

162 2lThe Fundamentals: Algorithms, the Integers, and Matrices 244

The connection between the notations used when working with remainders is made clear
in Theorem 8.

THEOREM 8 Leta andå beintegerqandlet mbeapositiveinteger.Thena : å (modru) if and
onlyifamoùm:bmoùm.

The proof of Theorem 8 is left as Exercises 21 and 22 at the end of this section.

EXAMPLE L6 Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent
modulo 6.

Solution: Since 6 divides 17 - 5 : l2,we see that 17 = 5 (mod 6). However, since
24 - 14: 10 is not divisible by 6, we see that 24 + 14 (mod 6). <

The great German mathematician Karl Friedrich Gauss developed the concept of
congruences at the end of the eighteenth century.

The notion of congruences has played an important role in the development of num-
ber theory. Theorem 9 provides a useful way to work with congruences.

THEOREM 9 Let m be a positive integer. The integers a and b are congruent modulo ru if and only
if there is an integer fr such that a : b * km.

Proof: If a: å (mod m),thenm I @ - b).Thismeansthatthereis anintegerk such
Íhat a - b : km,so that a : b * km. Conversely, if there is an integer k such that
e:blkm,thenkm:a- b.Hence,¡ø divides a- b,sothat a=b (modm). <

The set of all integers congruent to an integer a modulo ru is called the congruence
class of a modulo m.In Chapler 7 we will show that there are m pairwise disjoint equiv-
alence classes modulo m and that the union of these equivalence classes is the set of
integers.

Theorem 10 shows how congruences work with respect to addition and multipli-
cation.

:i l iIiìtiI<F ''

KARL FRIEDRICH GAUSS (1777-1855) Karl Friedrich Gauss, the son of a bricklayer, was a child
prodigy. He demonstrated his potential at the age of 10, when he quickly solved a problem assigned
by a teacher to keep the class busy. The teacher asked the students to find the surn of the first 100

positive integers. Gauss realized that this sum could be found by forming 50 pairs, each with the sum 101:

| + 100,2+99,. . . , 50 + 51. This brilliance attracted the sponsorship of patrons, including Duke Ferdinand
of Brunswick,who made it possible for Gauss to attend Caroline College and the University of Göttingen.
While a student, he invented the method of least squares, which is used to estimate the most likely value of
a variable from experimental results. In 1796 Gauss made a fundamental discovery in geometry, advancing
a subject that had not advanced since ancient times. He showed that a 17-sided regular polygon could be

drawn using just a ruler and compass.
In 1799 Gauss presented the first rigorous proof ofthe FundamentalTheorem ofAlgebra,which states

that a polynomiai of degree n has exactly n roots (counting multiplicities). Gauss achieved worldwide fame
when he successfully calcuiated the orbit of the flrst asteroid discovered, Ceres, using scanty datâ.

Gauss was called the Prince of Mathematics by his contemporary mathematicians. Although Gauss
is noted for his many discoveries in geometry, algebra, analysis, astronomy, and physics, he had a special
interest in number theory, which can be seen from his statement "Mathematics is the queen of the sciences,

and the theory of numbers is the queen of mathematics." Gauss laid the foundations for modern number
theory with the publication of his book Disquisitiones Arithmeticae in 1801.

l
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Letmbe apositiveinteger.If.a: b (modm) andc: d (modrrl),then

a I c :- b * d (modm) and ac = bd (mod m).

Proof: Since a : å (mod m) and c : d (mod m),there are integers s and t with
b : a * sm and d : c * tm.Hence,

b + d : (a I sm)+ (c * tm) : (a * c) -f m(s I t)

and

bcl : (a * sm)(c + tm) - ac + mlat I cs * stm).

Hence,

a + c: b + d (modm) and ac: bd (modm). <

Since 7 : 2 (mod 5) and 11 : I (mod 5), it follows from Theorem 10 thar

18:7+11 :2+l:3(mod5)
and that

7l:7.11:2.1:2 (mod5). <

APPLICATIONS OF CONGRUENCES

Number theory has applications to a wide range of areas. We will introduce three appli-
cations in this section: the use of congruences to assign memory locations to computer
files, the generation of pseudorandom numbers, and cryptosystems based on modular
arithmetic.

Hashing Functions The central computer at your school maintains records for each
student. How can memory locations be assigned so that student records can be retrieved
quickly? The solution to this problem is to use a suitably chosen hashing function. Records
are identified using a key, which uniquely identifies each student's records. For instance,
student records are often identif,ed using the Social Security number of the student as
the key. A hashing function /z assigns memory location h(k) to the record that has k as
its key.

In practice, many different hashing functions are used. One of the most common is
the function

h(k):kmodm

where m is the number of available memory locations.
Hashing functions should be easily evaluated so that files can be quickly located.

The hashing function h(k) : À mod m meets this requirement; to frnd h(k),we need
only compute the remainder when k is divided by rz. Furthermore, the hashing function
should be onto, so that all memory locations are possible. The function h(k) : kmodm
also satisf,es this property.

THEOREM IO

EXAMPLE 17

EXAMPLE 18
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For example, when m : 7ll, the record of the student with Social Security number
064212848 is assigned to memory location 14, since

h(064212848) :064212848 mod tll : 14.

Similarly, since

h(031 149212) : 031 149212 mod 1 1 1 : 65,

the record of the student with social Security numtrer 037149212 is assigned to memory
location 65.

EXAMPLE 19

Links

Since a hashing function is not one-to-one (since there are more possible keys thau
memory locations), more than one file may be assigned to a memory location. When this
happens, we say that a collision occurs. One way to resolve a collision is to assign the f,rst
free location following the occupied memory location assigned by the hashing functio¡.
For example, after making the two earlier assignments, we assign location 15 to the recor.cl
of the student with the Social Security nurnber 101405123 . To see this, first note that /z (/r)
maps this Social Security number to location 14, since

h(107405123) : 101405123 nodln : t4,

but this location is already occupied (by the file of the student with Social Security nr"rn
bet 064272848). However, memory location 15, the first location following memor:y loca-
tion 14, is free.

There are many Inore sophisticated ways to resolve collisions that are more effìcient
than the sirnple method we have described. These are discussed in the references on
hashing functions given at the end of the book. <

Pseudorandom Numbers Randomly chosen numbers are often needed for computer.
simulations. Different methods have been devised for generating numbers that have prop-
erties of randclmly chosen numbers. Because numbers generated by systematic methocls
are not truly random, they are called pseudorandom numbers.

The most commonly used procedure for generating pseucloranclom numbers is the
linear congruential meúhod. We choose four integers: the modulus ru, multiplier a, ip-
crement c, and seed ;s,with 2 < a < m,0 < c < t.t,and 0 < xo < nL.We generate a
sequence of pseudorandom numbers {,r,,}, with 0 < xn < m for all n, by successively
using the congruelìce

xn+l : (ox, + c) mod, nt.

(This is an example of a recursive definition, discussed in Section 3.4. In that section rve
will show that such sequences are well defined.)

Many computer experiments require the generation of pseudoranclom numbers be-
tween 0 and 1. To generate such numbers, we divide numbers generated witl.r a linear
congruential generator by the modulus: that is, we use the numbers x,, f in.

For instance, the sequence of pseudorandom numbers generated by choosing
tn :9, a : J, c : 4,and xg : 3, can be founcl as follows:

xt : "7x0 -f 4 : 1 . 3 + 4 : 25mod 9 : 7,

xz : 7xt I 4 :1 . 7 + 4 : 53mod9 : 8,

x3 :Jxz i 4 :7. 8 + 4 : 60mod9 : 6,

x+ :7x3 + 4 :l . 6 + 4 : 46mod9 : 1,
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xs : Jx4 I 4 : 7 . | + 4 : ll mod9 : 2,

x6 : "7xs I 4 : 7 . 2 +4 : 18 mod9 : 0,

xj :'7x6 I 4 :l . 0 + 4 : 4mod 9 : 4,

xB : 7xj * 4 : 1 . 4 + 4 : 32mod9 : 5,

x9:7xs* 4:7 .5 + 4:39 mod9: 3.

Since x9 : r0 and since each term depends only on the previous term, this sequence is
generated:

3,7, 8, 6, l, 2, 0, 4, 5, 3, l, 8, 6, 1,2, 0, 4, 5, 3, . . . .

This sequence contains nine different numbers before repeating.
Most computers do use linear congruential generators to generate pseudorandom

numbers. Often, a linear congruential generator with increment c : 0 is used. Such a
generator is called a pure multiplicative generator. For example, the pure multiplicative
generator with modulus 231 - I and multiplier 75 : 16,807 is widely used. With these
values, it can be shown that231 - 2 numbers are generated before repetition begins. <

CRYPTOLOGY

Congruences have many applications to discrete mathematics and computer science.
Discussions of these applications can be found in the suggested readings given at the end
of the book. One of the most important applications of congruences involves cryptology,
which is the study of secret messages. One of the earliest known uses of cryptology was
by Julius Caesar. He made messages secret by shifting each letter three letters forward in
the alphabet (sending the last three letters of the alphabet to the first three). For instance,
using this scheme the letter B is sent to E and the letter X is sent to A. This is an example
of encryption, that is, the process of making a message secret.

To express Caesar's encryption process mathematically, first replace each letter by an
integer from 0 to 25, based on its position in the alphabet. For example, replace Aby 0, K
by 10, and Z by 25. Caesar's encryption method can be represented by the function / that
assigns to the nonnegative integer p, p 

= 
25,the integer f @) in the set {O,1,2, . . . ,25}

with

f (p): @ +Z¡mod26.

In the encrypted version of the message, the letter represented by p is replaced with the
letter represented by (p + 3) mod26.

EXAMPLE 20 What is the secret message produced from the message "MEET YOU IN THE PARK"
using the Caesar cipher?

Solution: First replace the letters in the message with numbers. This produces

1244t9 241420 B 13 r914 15 017 i0.

Now replace each of these numbers p by f (p) : (p + 3) mod26. This gives

751722 rr723 11 16 22107 t832013.

Tianslating this back to letters produces the encrypted message "PHH'W BRX LQ
.WKH SDUN.'' <
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To recover the original message from a secret message encrypted by the Caesar

cipher, the function /-1, the inverse of /, is used. Note that the function /-1 sends an
integer p from{0,1,2,...,25} t" f-r(p) : (p - 3) morl26.In other words,to find
the original message, each letter is shifted back three letters in the alphabet, with the first
three letters sent to the last three letters of the alphabet. The process of determining the
original message from the encrypted message is called decryption.

There are various ways to generalize the Caesar cipher. For example, instead of
shifting each letter by 3, we can shift each letter by fr, so that

f(p):@+t¡mod26.
Such a cipher is called a shift cipher. Note that decryption can be carried out using

.f-t (p) : (p - k) mod26.

Obviously, Caesar's method and shift ciphers do not provide a high level of security.

There are various ways to enhance this method. One approach that slightly enhances the
security is to use a function of the form

f (p) : (ap + b) moù26,

where a and b are integers, chosen such that / is a bijection. (Such a mapping is called an

affine transformation.)This provides a number of possible encryption systems. The use of
one of these systems is illustrated in the following example.

EXAMPLE 21 What letter replaces the letter K when the function f (p) : (7 p + 3) mod 26 is used for
encryption?

Solution: First, note that 10 represents K. Then, using the encryption function specifled,

it follows that /(10) : (7 . 10 f 3) mod 26 :27. Since 21 represents V , K is replaced by
V in the encrypted message. <i

1l

I

l

;i ', iLtttls:.,..r1'l
Caesar's encryption method, and the generalization of this method, proceed by re-

placing each letter of the alphabet by another letter in the alphabet. Encryption methods
of this kind are vulnerable to attacks based on the frequency of occurrence of letters in
the message. More sophisticated encryption methods are based on replacing blocks of
letters with other blocks of letters. There are a number of techniques based on modu-
lar arithmetic for encrypting blocks of letters. A discussion of these can be found in the
suggested readings listed at the end of the book.

Ex aercrses
1. Does 17 divide each of these numbers?

a) 68 b) 84 c)357 d) 1001

2. Show Ihat iÎ a is an integer other than 0, then
a) 1 divides a. b) a divides 0.

3. Show that part (2) ofTheorem 1 is true.
4. Show that part (3) ofTheorem 1 is true.
5. Show that if a I b and b I a,where a and å are integers,

thena:bora:-b.

6. Show that if a, b, c, andd are integers such that a I c
andbld,lhenablcd.

7. Show fhat if a, b, and c are integers such that ac I bc'

then a I b.

8. Are these integers primes?

a) 19 b) 27

c) 93 d) 101

e) 107 Ð 113
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9. What are the quotient and remainder when

a) l9 is divided bY 7?

b) -lllisdividedbY l1?

c) 789 is divided bY 23?

d) l00t is divided bY l3?

e) 0 is divided bY 19?

f¡ 3 is divided bY 5?

g) - I is divided bY 3?

ñ¡ + is OiuiOed bY 1?

10. What are the quotient and remainder when

a) 44is divided bY 8?

b) 777 is divided bY 21 ?

-123 is divided by 19?

-1 is divided bY 23?

-2002ís divided by 87?

0 is divided bY 17?

1,234,561 is divided bY 1001?

-100 is divided by 101?

í. Find the prime factorization of each of these integers.

a) 88 b) 126 c) 729

d) 1001 e) 1111 f) 909,090

12. Find the prime factorization of each of these integers.

a\ 39 b) 81 c) 101

d)t43 e'¡ 289 Ð 899

13. Find the prime factorization of 10!.
*14. How many zeros are there at the end of 100!?
*15. Show that logr 3 is an irrational number' Recall that

an irrational number is a real number x that cannot

be written as the ratio of two integers.

16. Which positive integers less than 12 arc relatively
prime to 12?

17. Which positive integers less than 30 are relatively
prime to 30?

18. Determine whether the integers in each of these sets

are pairwise relatively prime.

a\ 21,34,55 b) L4,17,85
c\ 25,4r,49,64 d) 11,t8,19,23

1.9. Determine whether the integers in each of these sets

are pairwise relatively prime.

a) 11,15,19 b) 14,75,21
c) 12,17,3r,37 d) 7,8,9, 11

20. We call a positive integer perfect if it equals the sum
of its positive divisors other than itself.

a) Show that 6 and 28 are perfect.
b) Show that2p-t (2p - 1) is a perfect number when

2P - I isprime.
21. Letm be a positive integer. Show that a : b (modm)

if amod m:bmodm.
22, Letn be a positive integer. Show that a mod m : b

- modmifa:b(modm).
23. Show that if 2" - 1 is prime, then n is prime. lHint:

Use the identity 2u - | : (2n - l) ' (z'(b-t) ¡2a(b-2) a
...+2"+1).1

2.4 Exercises 167

24. Determine whether each of these integers is prime,

verifying some of Mersenne's claims.

a\27-1 b)2e-I
c)2tt-1 d¡zrz-l

25. The value of the Euler @'function at the positive inte-
ger n is defined to be the number of positive integers

less than or equal to ¡¿ that are relatively prime to n.

(Note: þ is the Greek letter phi') Find

^\ 
ó(4). b) ó(10). c) Ó(13).

26. Show that n is prime if and only iÎ þ(n) = t1 - l.
27. What is the value of þ@k) when p is prime and fr is a

positive integer?
28. What are the greatest common divisors of these pairs

of integers?

^) 
22 .33 .Ss, 2s .33 . 52

b) 2' 3. 5.7 . 11. 13, ztr' 3e . 11. 1'7ta

e\ t1, lltj
d\ 22 .1, 53 .13

e) 0,5
f) 2.3.5.7,2.3.5.7

29. What are the greatest common divisors of these pairs

of integers?

a) 37 . 53 .'13, 2tt . 35 ' 5e

b) 11 .13.1'7,2e.3't '5s.72
c) 233r, 2317

d) 41 . 43 .53, 41 .43 .53

e) 313 . 5t't,2t2 .721

Ð 1111,0

30. What is the least common multiple of each pair in
Exercise 28?

31. What is the least common multiple of each pair in
Exercise 29?

32. Find gcd(1000, 625) and lcm(1000,625) and verify
that gcd(1000,625) 'lcm(1000,625): 1000 ' 625'

*33. Show that if n and k are positive integers, then

ln/ kl : l(n - 1)/ k) + t.
34. Show thatif a is an integer and d is a positive inte-

ger greater than 1, then the quotient and remain-

der obtained when a is divided by d are lald) and

a - dla / d ),respectivelY.
35. Find a formula for the integer with smallest absolute

value that is congruent to an integer a modttlo m,

where m is a positive integer.
36. Evaluate these quantities.

a) -17 mod2 b) 144mod1
c) -101 mod 13 d) 199 mod 19

37. Evaluate these quantities.

a) 13 mod 3 b) -97 mod 11

c) 155 mod 19 d) -221mod 23

38. List five integers that are congruent to 4 modulo 12.

39. Decide whether each of these integers is congruent

to 5 modulo 17.

c)
d)
e)

Ð

c)
h)
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a) 80 b) 103

c\ -29 d) -122
40. If the pl'oduct of two integet's is 2738527rr and their

greatest commoll divisol is 23345, what is theil least

cornmon multiple?
41. Show that if r¡ and 1.¡ are positive integers then ab :

gcd(a, ö) . lcm(a, b).lHint: Use the prime factoliza-
tions of a a:ncl b and the formulae for gcd(c, å) and

lcm(u, b) in terms of these factorizations.]
42. Show that if a : ó (mod rr) and c : r/ (mod ¡rr),

wlrere a, b , c, d , and nr are integers with ,7 > 2, then
0-c=b d(rnodnt).

43. Show that if ¡r I n, where n and rt are positive integers
greater than l, and iIa : å (rnod rr),whet'e a andl¡
are integers, then ¿¡ = ó (mod n).

44. Slrow tlrati| a,b,c,andnr are integers such that nr > 2,

c > 0, ancl a = å (mod nt),Lhen oç = bc (mod rrzc).

45. Show that ctc - åc (mod li), where a, b, c, and m are

integers with ¡r > 2, does not necessarily imply that
u:b(modnt).

46. Show that if a, b,and m are integers such that ¡n > 2

and a = ú (mod nr), then gcd(.o, nt) : gcd(b, nt).

47. Show that if a, b, k, and nr are integers such that fr >
l,nt > 2, and r¡ : å (modn), then ¿¡À : åi(rnod nr)

whenevel k is a positive integer'.
48. Which memory locations are assìgned by the hashing

function h (k) : k motl 10 I to the records of students
with these Social Security numbeÍs?

a) 104578690 lù) 432222181

c) 372201919 d) 5013387s3

49. A parking lot has 31 visitot'spaces, numbered ft'om 0
to 30. Visitors are assigned parking spaces using tl.re
hashing lunction h(k) : t mod 31, whele k is the
number formed flom the fìrst three digits on a visi-
tor's license plate.
a) Which spaces are assigned by the hashing func-

tion to cars that have these lìrst three digits on
their license plates?

317, 918, 007, 100, I I l, 310

b) Describe a procedttre visitors should follow to
fìnd a free parking space, when the space tl.rey ale
assignecl is occupied.

50. What sequence of pseudolandom numbers is gener-

ated using the lineal congruential generator rn+r :
(4.r' I 1) mod 7 with seecl x¡ : lJ

51. What sequence of pseudorandom numbers is gener-

ated using the pure multiplicative generator rr+r :
3-r,, mod 11 with seed -ro : 2?

52. Wlite an algorithn.r in pseudocode for generating a

sequence of pseudofandom nuinbels using a linear
congruential generator.

53. Encrypt the messaþe "DO NOT PASS GO" by trans-

lating the letters into numbels, appiying the encryp-

2-50

tion function given, and then translating the numbels
back into lettels.
a\ f (p) : (p + 3) motl 26 (r.he Caesal cipher)
l¡) f (p) : (p + 13) ntotl 26

c) J @) : (3p + 7) rnod 26

54. Declypt these messages encrypted using the Caesar

ciphet'.
a) EOXH MHDQV
b) WHVWWRGDB
c) HDW GLPVXP

Books are identilied by an International Standard Book
Number (ISBN), a 1O-digit code r¡12 . . . rr0, assignecl by

the publisher'. These 10 digits consist of blocks identifying
the language, the publisher, the number assigned to the
book by its publishing company, and fìnally, a 1-digit check

digit that is either a digit ol the letter X (used to repre-
sent 10). This cl.reck cligit is selected so that !19, ir¡ : O

(mod 11) and is used to detect elrors in individual digits
and transposition of digits.

55. The first nine digits of the ISBN of the third edition
of this book are 0-07-053965. What is the check digit
for this book?

56. The ISBN of Elementary Nuntber Theory and lts Ap-
plicaÍiorts,3rd ed., is 0-201-57Q89-1, where Q is a

digit. Find the value of B.
57. Determine whethel the check digit of the ISBN for'

this textbook was computed corlectly by the pub-
lisher.

58. Find tl.re smallest positive integer with exactly n dif-
lerenl fnclol's when ri is

a) 3. b) 4. c) 5.

d) 6. e) 10.

59. Can you fincl a formula or rule for the nth term of a

sequence related to the prirne numbers or prime fac-

torizations so that the initial tet'ms of the sequence
have these values?

a) 0, l, 1,0, 1,0, 1,0,0,0, 1,0, 1,...
b) 1,2,3,2,s,2,1,
c) 1,2,2,3,2,4,2,
d) 1,1,1,0, l, r, r,
e) 1,2,3,3,5,5,'/,

,2,1r,2,13,2, . .

t) 6) ¿,

, 1, 1,0, I, l, ...
.7. ll,11,13,13,

Ð t,2, 6, 30,210, 2310,30030, s105l0,9699690,
2230928'70, .. .

60. Can you find a formula or rule for the r¡th term of a

sequence lelated to the prime numbers or prime fac-

torizations so that the initial terms of the sequence
have these values?

a) 2,2,3,5,5,7,7,11, 11, ll, 11, 13, 13,...
b) cr, 1, 2,2,3,3,4,4,4,4,5, 5, 6, 6,...
c) I , 0, 0, 1 , 0, 1 , 0, I , I , I , 0, 1 , 0, I , . . .

d) 1,-1, 1,0,-r,1,-1,0,0,1,-1,0,-1,1,1,...
e) I, I, I, l, 1,0, 1, 1, 1,0, l,0, 1,0,0, ...
Ð 4, 9, 2s, 49, t2t, t 69, 289, 361, 529, 841, 96t, t369'

)1
4,3
0,0
7,7


