Math 114

Optional problems on Mathematical Induction

1. Suppose that $2 n$ points are given in space, where $n \geq 2$. Altogether $n^{2}+1$ line segments are drawn between these points. Prove that there is at least one triangle (a set of three points which are joined pairwise by line segments).
2. There are n identical cars on a circular track. Among all of them, they have just enough gas for one car to complete a lap. Show that there is a car which can complete a lap by collecting gas from other cars on its way around.
3. (2pts) Let n be any natural number. Consider all nonempty subsets of the set $\{1,2, \ldots, n\}$, which do not contain any neighboring elements. Prove that the sum of the squares of the products of all numbers in these subsets is $(n+1)!-1$. (For example, if $n=3$, then such subsets of $\{1,2,3\}$ are $\{1\},\{2\},\{3\}$, and $\{1,3\}$, and $1^{2}+2^{2}+3^{2}+(1 \cdot 3)^{2}=$ $23=4!-1$.)
4. Find the determinant of the $n \times n$ matrix A_{n} with entries

$$
a_{i j}=\left\{\begin{array}{l}
2 \text { if } i=j \\
1 \text { if }|i-j|=1 . \\
0 \text { otherwise }
\end{array}\right.
$$

Hint: calculate the determinants of A_{1}, A_{2}, A_{3}, and A_{4}. Notice the pattern. Guess a formula for $\operatorname{det} A_{n}$, and then prove it by Mathematical Induction.

