MATH 111

Test 3 (12/11/07) - Solutions

1. Let A and B be nonempty sets. Is it true or false that every function from A to B is also a relation from A to B ? Explain.

This is true. Every function is a relation: a function from A to B is defined as a relation from A to B such that every element of A appears as the first coordinate in exactly one pair in the relation (recall that a relation is a subset of $A \times B$).
2. Let A be a set and $f: A \rightarrow A$ be one-to-one. Prove that $f \circ f$ is one-to-one.

Let $(f \circ f)(a)=(f \circ f)(b)$ for some $a, b \in A$. Then $f(f(a))=f(f(b))$. Since f is one-to-one, if follows that $f(a)=f(b)$ and therefore $a=b$. Thus $f \circ f$ is one-to-one.
3. Determine whether $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=x^{2}+3$ is one-to-one; onto; bijective. If $f(a)=f(b)$ for $a, b \in \mathbb{N}$, then $a^{2}+3=b^{2}+3$. Then $a^{2}=b^{2}$. Since $a, b>0$, it follows that $a=b$. Thus f is one-to-one. Since the equation $x^{2}+3=1$, or equivalently, $x^{2}=-2$, has no real solutions, $1 \in \mathbb{N}$ is not in the image of f. Thus f is not onto. Since f is not onto, it is not bijective.
4. Let R be a relation on \mathbb{R} defined by $(a, b) \in R$ if and only if $a+b \in \mathbb{Z}$. Determine whether R is reflexive; symmetric; transitive; an equivalence relation. If it is an equivalence relation, describe its distinct equivalence classes.
Since $0.1+0.1=0.2 \notin \mathbb{Z},(0.1,0.1) \notin R$. Thus R is not reflexive.
If $(a, b) \in R$, then $a+b \in \mathbb{Z}$. Therefore $b+a=a+b \in \mathbb{Z}$. So $(b, a) \in R$. Thus R is symmetric.
Since $0.1+0.9=1 \in \mathbb{Z}$ and $0.9+0.1=1 \in \mathbb{Z}$, but $0.1+0.1=0.2 \notin \mathbb{Z}$, we have $(0.1,0.9) \in R,(0.9,0.1) \in R$, but $(0.1,0.1) \notin R$. Thus R is not transitive.
Since R is not reflexive, it is not an equivalence relation.
5. Recall that the factorial of n is defined as $n!=1 \cdot 2 \cdot 3 \cdot \ldots n$. Prove that for any positive integer n,

$$
1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+n \cdot n!=(n+1)!-1
$$

We will prove this identity by Mathematical Induction.
Basis step: if $n=1$, then $1 \cdot 1!=2!-1$ is true.
Inductive step: assume that $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+k \cdot k!=(k+1)$! -1 for some $k \in \mathbb{N}$. We will prove that $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+(k+1) \cdot(k+1)!=(k+2)!-1$.

Observe that
$1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots+(k+1) \cdot(k+1)!=(1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\ldots k \cdot k!)+(k+1) \cdot(k+1)!=$ $(k+1)!-1+(k+1) \cdot(k+1)!=(k+1)!(1+k+1)-1=(k+1)!(k+2)-1=(k+2)!-1$.
6. (For extra credit) Give an example of a bijective function from \mathbb{Q} to $\mathbb{Q}-\{0\}$.

Consider $f: \mathbb{Q} \rightarrow(\mathbb{Q}-\{0\})$ defined by
$f(x)=\left\{\begin{array}{ll}x+1 & \text { if } x \in \mathbb{N} \cup\{0\} \\ x & \text { otherwise }\end{array}\right.$.
Note that $f(x) \in \mathbb{N}$ if and only if $x \in \mathbb{N} \cup\{0\}$.
Let $f\left(x_{1}\right)=f\left(x_{2}\right)$. We will consider two cases.
Case I: $f\left(x_{1}\right) \in \mathbb{N}$. Then $x_{1}, x_{2} \in \mathbb{N} \cup\{0\}$, so $x_{1}+1=x_{2}+1$. Therefore $x_{1}=x_{2}$.
Case II: $f\left(x_{1}\right) \notin \mathbb{N}$. Then $x_{1}, x_{2} \notin \mathbb{N} \cup\{0\}$, so $x_{1}=f\left(x_{1}\right)=f\left(x_{2}\right)=x_{2}$.
Thus f is one-to-one.
Now let $y \in \mathbb{Q}-\{0\}$. Again, we will consider two cases.
Case I: $y \in \mathbb{N}$. Let $x=y-1$. Then $x \in \mathbb{N} \cup\{0\}$, and $f(x)=x+1=y$.
Case II: $y \notin \mathbb{N} \cup\{0\}$, let $x=y$. Then $x \notin \mathbb{N} \cup\{0\}$, and $f(x)=x=y$.
Thus f is onto.
Since f is one-to-one and onto, it is bijective.

