MATH 111

Test 3 (12/10/07) - Solutions

1. Let $A=\{1,2,3\}$ and $B=\{4,5,6\}$. Give an example of a relation from A to B that is not a function from A to B.
The set $R=\{(1,4)\}$ is a relation from A to B (because it is a subset of $A \times B$), but not a function from A to B (because e.g. the image of $2 \in A$ is undefined).
2. Let A be a set and $f: A \rightarrow A$ be onto. Prove that $f \circ f$ is onto.

Let $y \in A$. Since f is onto, there exists $a \in A$ such that $f(a)=y$ and there exists $x \in A$ such that $f(x)=a$. Then $(f \circ f)(x)=f(f(x))=f(a)=y$. Therefore $f \circ f$ is onto.
3. Determine whether $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x^{2}+1}$ is one-to-one; onto; bijective. Since $f(-1)=\frac{1}{2}=f(1)$ and $-1 \neq 1, f$ is not one-to-one. Since $\frac{1}{x^{2}+1}>0$ for all $x \in \mathbb{R},-1 \in \mathbb{R}$ is not in the image, so f is not onto. Finally, f is not bijective because it is not one-to-one and onto.
4. Let R be a relation on \mathbb{Z} defined by $(a, b) \in R$ if and only if $2 \mid(a+b)$. Determine whether R is an equivalence relation. If so, describe its distinct equivalence classes.

We will prove that R is an equivalence relation.
(1) For any $a \in \mathbb{Z}, 2 \mid(a+a)$, so $(a, a) \in R$. Thus R is reflexive.
(2) If $(a, b) \in R$, then $2 \mid(a+b)$. Then $2 \mid(b+a)$, so $(b, a) \in R$. Thus R is symmetric.
(3) If $(a, b) \in R$ and $(b, c) \in R$, then $2 \mid(a+b)$ and $2 \mid(b+c)$. Then $2 \mid(a+b+b+c)$, i.e. $2 \mid(a+2 b+c)$. Since $2|(2 b), 2|(a+2 b+c-2 b)$, i.e. $2 \mid(a+c)$. Therefore $(a, c) \in R$. Thus R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.
Equivalence classes are:
$[0]=\{a \in \mathbb{Z} \mid(a, 0) \in R\}=\{a \in \mathbb{Z}|2| a\}=\{\ldots,-6,-4,-2,0,2,4,6, \ldots\}$,
$[1]=\{a \in \mathbb{Z} \mid(a, 1) \in R\}=\{a \in \mathbb{Z}|2|(a+1)\}=\{\ldots,-5,-3,-1,1,3,5, \ldots\} ;$
since $[0] \cup[1]=\mathbb{Z}$, there are no other equivalence classes.
5. Prove that for any positive integer n,

$$
1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}
$$

We will prove the identity by Mathematical Induction.
Basis step: if $n=1$, then $1 \cdot 2 \cdot 3=\frac{1 \cdot 2 \cdot 3 \cdot 4}{4}$ is true.

Inductive step: assume that $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}$ for some $k \in \mathbb{N}$. We will prove that $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+(k+1)(k+2)(k+3)=$ $\frac{(k+1)(k+2)(k+3)(k+4)}{4}$.
Observe that $1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+(k+1)(k+2)(k+3)=$
$(1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+k(k+1)(k+2))+(k+1)(k+2)(k+3)=$ $\frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3)=$
$\frac{k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3)}{4}=\frac{(k+1)(k+2)(k+3)(k+4)}{4}$.
6. (For extra credit) Let A be a set. Prove that if a function $f: A \rightarrow A$ is an equivalence relation on A, then it is bijective.
If f is an equivalence relation on A, then it is reflexive. Then for any $a \in A,(a, a) \in f$, i.e. $f(a)=a$. So f is the identity function on A. This function is one-to-one since $f\left(a_{1}\right)=f\left(a_{2}\right)$ implies $a_{1}=a_{2}$ and it is onto since for any $b \in A$, if we let $a=b$, then $f(a)=b$. Thus f is bijective.

