MATH 111

Test 2

November 6, 2007

- $\bullet\,$ No books, notes, or calculators are allowed.
- Please show all your work.

1. (10 points) Let $a \in \mathbb{Z}$. Prove that if $3|a^2$, then 3|a.

2. (10 points) Prove that for any integer a, there exists an integer b such that b > a and $a \equiv b \pmod 5$.

3. (10 points) Prove or disprove.

The equation $x^3 + 5x + 2 = 0$ has an integer solution.

4. (10 points) Prove or disprove.

Let A and B be sets. Then $(A - B) \cup (A \cap B) = A$.

5. (10 points) Prove or disprove.	
There exists a largest rational number, i.e. a rational number a such that for any rational number $b, a \ge b$.	у

6. (For extra credit, 8 points) Prove or disprove.

For any rational numbers a and b such that a < b, there exists an irrational number x such that a < x < b.