Test 2 (11/06/07) - Solutions

1. Let $a \in \mathbb{Z}$. Prove that if $3 \mid a^{2}$, then $3 \mid a$.

Proof by contrapositive. Let 3 久a. Then either $a=3 k+1$ or $a=3 k+2$ for some $k \in \mathbb{Z}$.
Case I: $a=3 k+1$ for some $k \in \mathbb{Z}$. Then $a^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$. Since $3 k^{2}+2 k \in \mathbb{Z}, 3 \not \backslash a^{2}$.
Case II: $a=3 k+2$ for some $k \in \mathbb{Z}$. Then $a^{2}=(3 k+2)^{2}=9 k^{2}+12 k+4=$ $3\left(3 k^{2}+4 k+1\right)+1$. Since $3 k^{2}+4 k+1 \in \mathbb{Z}, 3 \nless a^{2}$.
2. Prove that for any integer a, there exists an integer b such that $b>a$ and $a \equiv b(\bmod 5)$.

For any $a \in \mathbb{Z}$, let $b=a+5$. Then $b>a$. Since $0 \equiv 5(\bmod 5)$, $a \equiv b(\bmod 5)$.
3. Prove or disprove. The equation $x^{3}+5 x+2=0$ has an integer solution.

The statement is false. For any integer x, either $x \geq 0$ or $x \leq-1$. We will consider these two cases.
Case I: $x \geq 0$. Then $x^{3}+5 x+2 \geq 0+0+2=2$, so $x^{3}+5 x+2 \neq 0$.
Case II: $x \leq-1$. Then $x^{3}+5 x+2 \leq-1-5+2=-4$, so $x^{3}+5 x+2 \neq 0$.
In either case, x is not a solution of the given equation.
4. Prove or disprove. Let A and B be sets. Then $(A-B) \cup(A \cap B)=A$.

The statement is true. First we will show that $(A-B) \cup(A \cap B) \subset A$. Let $x \in$ $(A-B) \cup(A \cap B)$. Then $x \in(A-B)$ or $x \in(A \cap B)$. In either case, $x \in A$.
Next we will show that $A \subset(A-B) \cup(A \cap B)$. Let $x \in A$. If $x \in B$, then $x \in(A \cap B)$. If $x \notin B$, then $x \in(A-B)$. In either case, $x \in(A-B) \cup(A \cap B)$.
5. Prove or disprove. There exists a largest rational number, i.e. a rational number a such that for any rational number $b, a \geq b$.
The statement is false. We will prove this by contradiction. Suppose a is a largest rational number. Consider $b=a+1$. Then $b>a$. Also, since a is rational, $a=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $b=a+1=\frac{m}{n}+1=\frac{m+n}{n}$. Since $m+n, n \in \mathbb{Z}$ and $n \neq 0$, b is rational. So b is a rational number larger than a. Contradiction.
6. (For extra credit) Prove or disprove. For any rational numbers a and b such that $a<b$, there exists an irrational number x such that $a<x<b$.
The statement is true. For any rational numbers a and b, consider $x=a+\frac{b-a}{\sqrt{2}}$. Since $b-a>0, x>a$. Also, since $\sqrt{2}>1, x<a+(b-a)=b$. Finally, we will prove that x is irrational. We will prove this by contradiction. Assume x is rational. Then $a=\frac{k}{l}, b=\frac{m}{n}$, and $x=\frac{p}{q}$ for some $k, l, m, n, p, q \in \mathbb{Z}, l \neq 0, n \neq 0, q \neq 0$. Thus $\frac{p}{q}=\frac{k}{l}+\frac{\frac{m}{n}-\frac{k}{l}}{\sqrt{2}}$. Equivalently, $\frac{p}{q}-\frac{k}{l}=\frac{\frac{m l-k n}{n l}}{\sqrt{2}}$, or $\frac{p l-k q}{q l}=\frac{m l-k n}{\sqrt{2} n l}$. Therefore $\sqrt{2}=\frac{q(m l-k n)}{n(p l-k q)}$. Since $q(m l-k n), n(p l-k q) \in \mathbb{Z}$ and $n(p l-k q) \neq 0(p l-k q \neq 0$ because $x-a \neq 0)$, $\sqrt{2}$ is rational. Contradiction.

