MATH 111 Test 2 (11/06/07) - Solutions

1. Let $a \in \mathbb{Z}$. Prove that if $3|a^2$, then 3|a.

Proof by contrapositive. Let 3 $\not|a$. Then either a = 3k + 1 or a = 3k + 2 for some $k \in \mathbb{Z}$. Case I: a = 3k + 1 for some $k \in \mathbb{Z}$. Then $a^2 = (3k + 1)^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$. Since $3k^2 + 2k \in \mathbb{Z}$, $3 \not|a^2$. Case II: a = 3k + 2 for some $k \in \mathbb{Z}$. Then $a^2 = (3k + 2)^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$. Since $3k^2 + 4k + 1 \in \mathbb{Z}$, $3 \not|a^2$.

- 2. Prove that for any integer a, there exists an integer b such that b > a and $a \equiv b \pmod{5}$. For any $a \in \mathbb{Z}$, let b = a + 5. Then b > a. Since $0 \equiv 5 \pmod{5}$, $a \equiv b \pmod{5}$.
- 3. Prove or disprove. The equation x³ + 5x + 2 = 0 has an integer solution. The statement is false. For any integer x, either x ≥ 0 or x ≤ -1. We will consider these two cases. Case I: x ≥ 0. Then x³ + 5x + 2 ≥ 0 + 0 + 2 = 2, so x³ + 5x + 2 ≠ 0. Case II: x ≤ -1. Then x³ + 5x + 2 ≤ -1 - 5 + 2 = -4, so x³ + 5x + 2 ≠ 0. In either case, x is not a solution of the given equation.
- 4. Prove or disprove. Let A and B be sets. Then $(A B) \cup (A \cap B) = A$. The statement is true. First we will show that $(A - B) \cup (A \cap B) \subset A$. Let $x \in (A - B) \cup (A \cap B)$. Then $x \in (A - B)$ or $x \in (A \cap B)$. In either case, $x \in A$. Next we will show that $A \subset (A - B) \cup (A \cap B)$. Let $x \in A$. If $x \in B$, then $x \in (A \cap B)$. If $x \notin B$, then $x \in (A - B)$. In either case, $x \in (A - B) \cup (A \cap B)$.
- 5. Prove or disprove. There exists a largest rational number, i.e. a rational number a such that for any rational number $b, a \ge b$.

The statement is false. We will prove this by contradiction. Suppose a is a largest rational number. Consider b = a + 1. Then b > a. Also, since a is rational, $a = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $b = a + 1 = \frac{m}{n} + 1 = \frac{m+n}{n}$. Since $m + n, n \in \mathbb{Z}$ and $n \neq 0$, b is rational. So b is a rational number larger than a. Contradiction.

6. (For extra credit) Prove or disprove. For any rational numbers a and b such that a < b, there exists an irrational number x such that a < x < b.

The statement is true. For any rational numbers a and b, consider $x = a + \frac{b-a}{\sqrt{2}}$. Since b-a > 0, x > a. Also, since $\sqrt{2} > 1$, x < a + (b-a) = b. Finally, we will prove that x is irrational. We will prove this by contradiction. Assume x is rational. Then $a = \frac{k}{l}$, $b = \frac{m}{n}$, and $x = \frac{p}{q}$ for some $k, l, m, n, p, q \in \mathbb{Z}$, $l \neq 0$, $n \neq 0$, $q \neq 0$. Thus $\frac{p}{q} = \frac{k}{l} + \frac{\frac{m-k}{n}}{\sqrt{2}}$. Equivalently, $\frac{p}{q} - \frac{k}{l} = \frac{\frac{ml-kn}{nl}}{\sqrt{2}}$, or $\frac{pl-kq}{ql} = \frac{ml-kn}{\sqrt{2}nl}$. Therefore $\sqrt{2} = \frac{q(ml-kn)}{n(pl-kq)}$. Since $q(ml-kn), n(pl-kq) \in \mathbb{Z}$ and $n(pl-kq) \neq 0$ ($pl-kq \neq 0$ because $x - a \neq 0$), $\sqrt{2}$ is rational. Contradiction.