Test 2 (11/05/07) - Solutions

1. Let $a \in \mathbb{Z}$. Prove that if $4 \mid a^{2}$, then $2 \mid a$.

Proof by contrapositive. Let 2 久a. Then $a=2 k+1$ for some $k \in \mathbb{Z}$. Then $a^{2}=$ $(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1$. Since $k^{2}+k \in \mathbb{Z}, 4 \not a^{2}$.
2. Prove that $\sqrt[3]{2}$ is an irrational number.

Proof by contradiction. Assume that $\sqrt[3]{2}$ is rational, then $\sqrt[3]{2}=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$ such that $a>0, b>0$, and a and b are relatively prime. Cubing both sides of the above equation gives $2=\frac{a^{3}}{b^{3}}$, therefore $a^{3}=2 b^{3}$. Since $b^{3} \in \mathbb{Z}, 2 \mid a^{3}$. By the Lemma proved below, $2 \mid a$. Then $a=2 k$ for some $k \in \mathbb{Z}$. Therefore $(2 k)^{3}=2 b^{3}$. Equivalently, $4 k^{3}=b^{3}$. Since $b^{3}=2\left(2 k^{3}\right)$ and $2 k^{3} \in \mathbb{Z}, 2 \mid b^{3}$. By Lemma, $2 \mid b$. We get a contradiction since we assumed that a and b were relatively prime.
Lemma. Let $n \in \mathbb{Z}$. If $2 \mid n^{3}$, then $2 \mid n$.
Proof by contrapositive. Let $2 \wedge n$. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore $n^{3}=(2 k+1)^{3}=8 k^{3}+12 k^{2}+6 k+1=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$. Since $4 k^{3}+6 k^{2}+3 k \in \mathbb{Z}$, $2 \nmid n^{3}$.
3. Prove or disprove. The equation $x^{3}+5 x+2=0$ has a real solution.

The statement is true. Let $f(x)=x^{3}+5 x+2$. Since $f(x)$ is continuous, $f(0)=2>0$, and $f(-1)=-4<0$, by the Intermediate Value Theorem $f(x)$ has a root.
4. Prove or disprove. Let A and B be sets. Then $(A-B) \cap(A \cup B)=A$.

The statement is false. Let $A=\{1,2\}, B=\{2,3\}$, then $A-B=\{1\}, A \cup B=\{1,2,3\}$, so $(A-B) \cap(A \cup B)=\{1\} \neq A$.
5. Prove or disprove. For any integer a there exist an integer b such that $b<a$ and $a \equiv b(\bmod 2)$.
The statement is true. For any integer a, let $b=a-2$. Then $b<a$ and $a \equiv b(\bmod 2)$ because $2 \mid(a-a+2)$.
6. (For extra credit) Prove or disprove. The number $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ is irrational.

The statement is true. We will prove it by contradiction. Assume that $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ is rational. Then $\frac{\sqrt{2}-1}{\sqrt{2}+1}=\frac{a}{b}$ for some $a, b \in \mathbb{Z}, b \neq 0$. Then $b(\sqrt{2}-1)=a(\sqrt{2}+1)$. Equivalently, $b \sqrt{2}-b=a \sqrt{2}+a$, or $\sqrt{2}(b-a)=a+b$, so $\sqrt{2}=\frac{a+b}{b-a}$. Since $a+b, a-b \in \mathbb{Z}$ and $b-a \neq 0(b \neq a$ since $\sqrt{2}-1 \neq \sqrt{2}+1), \sqrt{2}$ is rational. Contradiction.

