MATH 111

Test 2 (11/05/07) - Solutions

1. Let $a \in \mathbb{Z}$. Prove that if $4|a^2$, then 2|a.

Proof by contrapositive. Let 2 /a. Then a = 2k + 1 for some $k \in \mathbb{Z}$. Then $a^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. Since $k^2 + k \in \mathbb{Z}$, $4 / a^2$.

2. Prove that $\sqrt[3]{2}$ is an irrational number.

Proof by contradiction. Assume that $\sqrt[3]{2}$ is rational, then $\sqrt[3]{2} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ such that a > 0, b > 0, and a and b are relatively prime. Cubing both sides of the above equation gives $2 = \frac{a^3}{b^3}$, therefore $a^3 = 2b^3$. Since $b^3 \in \mathbb{Z}$, $2|a^3$. By the Lemma proved below, 2|a. Then a = 2k for some $k \in \mathbb{Z}$. Therefore $(2k)^3 = 2b^3$. Equivalently, $4k^3 = b^3$. Since $b^3 = 2(2k^3)$ and $2k^3 \in \mathbb{Z}$, $2|b^3$. By Lemma, 2|b. We get a contradiction since we assumed that a and b were relatively prime.

Lemma. Let $n \in \mathbb{Z}$. If $2|n^3$, then 2|n.

Proof by contrapositive. Let 2 / n. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Therefore $n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k + 1 = 2(4k^3 + 6k^2 + 3k) + 1$. Since $4k^3 + 6k^2 + 3k \in \mathbb{Z}$, $2 / n^3$.

3. Prove or disprove. The equation $x^3 + 5x + 2 = 0$ has a real solution.

The statement is true. Let $f(x) = x^3 + 5x + 2$. Since f(x) is continuous, f(0) = 2 > 0, and f(-1) = -4 < 0, by the Intermediate Value Theorem f(x) has a root.

4. Prove or disprove. Let A and B be sets. Then $(A - B) \cap (A \cup B) = A$.

The statement is false. Let $A = \{1, 2\}$, $B = \{2, 3\}$, then $A - B = \{1\}$, $A \cup B = \{1, 2, 3\}$, so $(A - B) \cap (A \cup B) = \{1\} \neq A$.

5. Prove or disprove. For any integer a there exist an integer b such that b < a and $a \equiv b \pmod{2}$.

The statement is true. For any integer a, let b = a - 2. Then b < a and $a \equiv b \pmod{2}$ because $2 \mid (a - a + 2)$.

6. (For extra credit) Prove or disprove. The number $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ is irrational.

The statement is true. We will prove it by contradiction. Assume that $\frac{\sqrt{2}-1}{\sqrt{2}+1}$ is

rational. Then $\frac{\sqrt{2}-1}{\sqrt{2}+1}=\frac{a}{b}$ for some $a,b\in\mathbb{Z},\ b\neq 0$. Then $b(\sqrt{2}-1)=a(\sqrt{2}+1)$.

Equivalently, $b\sqrt{2} - b = a\sqrt{2} + a$, or $\sqrt{2}(b - a) = a + b$, so $\sqrt{2} = \frac{a + b}{b - a}$. Since $a + b, a - b \in \mathbb{Z}$ and $b - a \neq 0$ ($b \neq a$ since $\sqrt{2} - 1 \neq \sqrt{2} + 1$), $\sqrt{2}$ is rational. Contradiction.