MATH 110

Practice Questions for Test 3

- 1. For each statement, state whether it is true or false.
 - (a) Unlike in the classical logic, in modal logic we can't say that a formula has a truth value (true or false) given the truth values of its components (propositional variables).
 - (b) The formula $\Box P \rightarrow P$ is a tautology.
 - (c) The operation \Diamond is defined by $\Diamond P = \neg \Box \neg P$.
 - (d) Necessitation rule says that if we derived $\Box P$, then we derived P.
 - (e) Axiom T is derivable from axioms K and 4.
 - (f) Axiom D is derivable in S4.
- 2. For $X = \{a, b, c, d\}$, Determine which of the following are topologies on X. For those that are not, identify all axioms (out of the four axioms in the definition of a topological space) that do not hold.
 - (a) $\tau = \{\emptyset, \{a\}, X\}$
 - (b) $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, X\}$
 - (c) $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, X\}$
 - (d) $\tau = \{\emptyset, \{a, b\}, \{a, c\}, X\}$
- 3. Consider the set \mathbb{R} with the usual topology. For each subset of \mathbb{R} given below,
 - determine whether it is open, closed, both, or neither; and
 - find its interior and closure.
 - (a) $\{1, 2, 3\}$
 - (b) $[2,3) \cap \mathbb{Q}$
 - (c) $[2,3] \cup [4,\infty)$
 - (d) $(2,3) \cup (3,4)$
- 4. Consider \mathbb{R} with the usual topology, and the following interpretation: $f(P) = (0,3], f(Q) = \{0,1\} \cup [2,4)$. Find the following:
 - (a) $f(\Box Q)$
 - (b) $f(\Diamond Q)$
 - (c) $f(\neg \Box P)$
 - (d) $f(P \land \Box Q)$
 - (e) $f(\Box P \lor Q)$
 - (f) $f(P \to \Diamond P)$

- 5. Give an example of a topological space in which the formula $\square P \lor \square \neg P$ is not valid.
- 6. Complete the following proof of $\Box \Diamond \Box \Diamond P \to \Box \Diamond P$ from S4.

