Axioms

An axiom system consists of a set of formulas (called axioms) and some rules (called rules of inference). We say that an axiom system is **sound** if every formula that is derivable from this axiom system is valid (i.e. is a tautology). An axiom system is **complete** if every valid formula (i.e. every tautology) can be derived from this axiom system.

The following is one of the sound and complete axiom systems for the classical propositional logic.

Axioms:

1.
$$(X \land Y) \rightarrow X$$

2. $(X \land Y) \rightarrow Y$
3. $X \rightarrow (X \lor Y)$
4. $Y \rightarrow (X \lor Y)$
5. $(\neg \neg X) \rightarrow X$
6. $X \rightarrow (Y \rightarrow X)$
7. $X \rightarrow (Y \rightarrow (X \land Y))$
8. $((X \rightarrow Y) \land (X \rightarrow \neg Y)) \rightarrow \neg X$
9. $((X \rightarrow Z) \land (Y \rightarrow Z)) \rightarrow ((X \lor Y) \rightarrow Z)$
10. $((X \rightarrow Y) \land (X \rightarrow (Y \rightarrow Z))) \rightarrow (X \rightarrow Z)$

Rule of inference:

• (Modus Ponens)
$$\frac{X, \ X \to Y}{Y}$$

The rule of Modus Ponens means that if X and $X \to Y$ are derivable from the axiom system, then so is Y.

Deriving other equivalences from the above axioms.

Example 1. Derive $(A \land B) \rightarrow (B \land A)$ from the above axioms.

1. $(((A \land B) \to A) \land ((A \land B) \to (A \to (B \land A))) \to ((A \land B) \to (B \land A))$ axiom (10), replace X with $(A \wedge B)$, Y with A, and Z with $(B \wedge A)$ 2. $(A \land B) \rightarrow A$ axiom (1)3. $(((A \land B) \to B) \land ((A \land B) \to (B \to (A \to (B \land A))))) \to$ $((A \land B) \to (A \to (B \land A)))$ axiom (10), replace X with $(A \wedge B)$, Y with B, and Z with $[A \to (B \land A)]$ 4. $(A \land B) \rightarrow B$ axiom (2)5. $(B \to (A \to (B \land A))) \to ((A \land B) \to (B \to (A \to (B \land A))))$ axiom (6), replace X with $(B \to (A \to (B \land A)))$ and Y with $(A \wedge B)$ 6. $B \to (A \to (B \land A))$ axiom (7)7. $(A \land B) \to (B \to (A \to (B \land A)))$ Modus Ponens, 6, 5 8. $((A \land B) \to B) \to (((A \land B) \to (B \to (A \to (B \land A)))) \to$ $(((A \land B) \to B) \land ((A \land B) \to (B \to (A \to (B \land A))))))$ axiom (7), replace X with $((A \land B) \to B)$ and Y with $((A \land B) \to (B \to (A \to (B \land A))))$ 9. $((A \land B) \to (B \to (A \to (B \land A)))) \to$ $(((A \land B) \to B) \land ((A \land B) \to (B \to (A \to (B \land A))))))$ Modus Ponens, 4, 8 10. $((A \land B) \to B) \land ((A \land B) \to (B \to (A \to (B \land A))))$ Modus Ponens, 7, 9 11. $(A \land B) \rightarrow (A \rightarrow (B \land A))$ Modus Ponens, 3, 10 12. $((A \land B) \to A) \to (((A \land B) \to (A \to (B \land A))) \to$ $(((A \land B) \to A) \land ((A \land B) \to (A \to (B \land A)))))$ axiom (7), replace X with $((A \land B) \to A)$ and Y with $((A \land B) \to (A \to (B \land A)))$ 13. $((A \land B) \to (A \to (B \land A))) \to$ $(((A \land B) \to A) \land ((A \land B) \to (A \to (B \land A))))$ Modus Ponens, 2, 12 14. $((A \land B) \to A) \land ((A \land B) \to (A \to (B \land A)))$ Modus Ponens, 11, 13 15. $(A \land B) \to (B \land A)$ Modus Ponens, 1, 14