Axioms

An axiom system consists of a set of formulas (called axioms) and some rules (called rules of inference). We say that an axiom system is sound if every formula that is derivable from this axiom system is valid (i.e. is a tautology). An axiom system is complete if every valid formula (i.e. every tautology) can be derived from this axiom system.

The following is one of the sound and complete axiom systems for the classical propositional logic.

Axioms:

1. $(X \wedge Y) \rightarrow X$
2. $(X \wedge Y) \rightarrow Y$
3. $X \rightarrow(X \vee Y)$
4. $Y \rightarrow(X \vee Y)$
5. $(\neg \neg X) \rightarrow X$
6. $X \rightarrow(Y \rightarrow X)$
7. $X \rightarrow(Y \rightarrow(X \wedge Y))$
8. $((X \rightarrow Y) \wedge(X \rightarrow \neg Y)) \rightarrow \neg X$
9. $((X \rightarrow Z) \wedge(Y \rightarrow Z)) \rightarrow((X \vee Y) \rightarrow Z)$
10. $((X \rightarrow Y) \wedge(X \rightarrow(Y \rightarrow Z))) \rightarrow(X \rightarrow Z)$

Rule of inference:

- (Modus Ponens) $\frac{X, X \rightarrow Y}{Y}$

The rule of Modus Ponens means that if X and $X \rightarrow Y$ are derivable from the axiom system, then so is Y.

Deriving other equivalences from the above axioms.

Example 1. Derive $(A \wedge B) \rightarrow(B \wedge A)$ from the above axioms.

1. $(((A \wedge B) \rightarrow A) \wedge((A \wedge B) \rightarrow(A \rightarrow(B \wedge A))) \rightarrow((A \wedge B) \rightarrow(B \wedge A))$ axiom (10), replace X with $(A \wedge B)$, Y with A, and Z with $(B \wedge A)$
2. $(A \wedge B) \rightarrow A$ axiom (1)
3. $(((A \wedge B) \rightarrow B) \wedge((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A))))) \rightarrow$ $((A \wedge B) \rightarrow(A \rightarrow(B \wedge A)))$
axiom (10), replace X with $(A \wedge B)$, Y with B, and Z with $[A \rightarrow(B \wedge A)]$
4. $(A \wedge B) \rightarrow B$ axiom (2)
5. $(B \rightarrow(A \rightarrow(B \wedge A))) \rightarrow((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A))))$ axiom (6), replace X with $(B \rightarrow(A \rightarrow(B \wedge A)))$ and Y with $(A \wedge B)$
6. $B \rightarrow(A \rightarrow(B \wedge A))$
7. $(A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A))) \quad$ Modus Ponens, 6,5
8. $((A \wedge B) \rightarrow B) \rightarrow(((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A)))) \rightarrow$ $(((A \wedge B) \rightarrow B) \wedge((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A)))))$
axiom (7), replace X with $((A \wedge B) \rightarrow B)$ and Y with $((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A))))$
9. $((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A)))) \rightarrow$ $(((A \wedge B) \rightarrow B) \wedge((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A)))))$

Modus Ponens, 4, 8
10. $((A \wedge B) \rightarrow B) \wedge((A \wedge B) \rightarrow(B \rightarrow(A \rightarrow(B \wedge A))))$

Modus Ponens, 7, 9
11. $(A \wedge B) \rightarrow(A \rightarrow(B \wedge A)) \quad$ Modus Ponens, 3,10
12. $((A \wedge B) \rightarrow A) \rightarrow(((A \wedge B) \rightarrow(A \rightarrow(B \wedge A))) \rightarrow$
$(((A \wedge B) \rightarrow A) \wedge((A \wedge B) \rightarrow(A \rightarrow(B \wedge A)))))$
axiom (7), replace X with $((A \wedge B) \rightarrow A)$ and Y with $((A \wedge B) \rightarrow(A \rightarrow(B \wedge A)))$
13. $((A \wedge B) \rightarrow(A \rightarrow(B \wedge A))) \rightarrow$
$(((A \wedge B) \rightarrow A) \wedge((A \wedge B) \rightarrow(A \rightarrow(B \wedge A)))) \quad$ Modus Ponens, 2, 12
14. $((A \wedge B) \rightarrow A) \wedge((A \wedge B) \rightarrow(A \rightarrow(B \wedge A))) \quad$ Modus Ponens, 11, 13
15. $(A \wedge B) \rightarrow(B \wedge A) \quad$ Modus Ponens, 1, 14

