Expressing some operations in terms of others revisited.

Recall the following from a previous lecture.
From the six operations $\neg, \wedge, \vee, \oplus, \rightarrow, \leftrightarrow$, some operations can be expressed in terms of others. For example,
$P \rightarrow Q \equiv \neg P \vee Q$.
Also, it can be checked using the truth tables that
$P \wedge Q \equiv \neg(\neg P \vee \neg Q)$,
$P \vee Q \equiv \neg(\neg P \wedge \neg Q)$,
$P \oplus Q \equiv(P \wedge \neg Q) \vee(\neg P \wedge Q)$,
$P \leftrightarrow Q \equiv(P \wedge Q) \vee(\neg P \wedge \neg Q)$.
Observations made earlier:

1. Any operation can be defined in terms of \wedge, \vee, and \neg.
2. Since \wedge can be defined in terms of \vee and \neg, any operation can be defined in terms of these two.
3. Since \vee can be defined in terms of \wedge and \neg, any operation can be defined in terms of these two as well.

Old questions and new answers:

1. Can \neg be defined in terms of \wedge and \vee ?

Answer: no. If this were possible, we would have an expression that contains only variables, \wedge, and \vee, and is logically equvalent to $\neg P$. However, when constructing a truth table for such an expression, we would only have the value T in the first line, where each variable has the value T. So, it is not possible to get an F in that line, therefore the expression cannot be logically equivalent to $\neg P$.
2. Can \wedge and \vee be defined in terms of \rightarrow and \neg ? If so, how? If not, explain why not.

Answer: yes. Since $P \rightarrow Q \equiv \neg P \vee Q$, replacing P with $\neg P$ and
eliminating the double negation, we have:

$$
P \vee Q \equiv \neg P \rightarrow Q
$$

Applying negation to both sides of this gives

$$
\neg(P \vee Q) \equiv \neg(\neg P \rightarrow Q)
$$

Using DeMorgan's law,

$$
\neg P \wedge \neg Q \equiv \neg(\neg P \rightarrow Q)
$$

Finally, replace P with $\neg P$ and Q with $\neg Q$, and eliminate the double negation to obtain:

$$
P \wedge Q \equiv \neg(P \rightarrow \neg Q)
$$

3. Can all of these six operations be expressed in terms of just one of them? If so, which one? If not, explain why not.

Answer: no.

- \neg is insufficient because it cannot connect two variables.
- $\wedge, \vee, \rightarrow$, and \leftrightarrow always will give the truth value T when each variable has the value T , therefore cannot express negation.
- \oplus will always give the value F when each variable has the value F, therefore cannot express \leftrightarrow.

4. Does there exist any other operation (an operation can be defined by a truth table) that could be used to define all six of the above (classical) operations?

Answer: yes. There are two such operations, namely,

$$
X \star Y=\neg(X \wedge Y)
$$

and

$$
X * Y=\neg(X \vee Y)
$$

First let's show that these operations \star and $*$ are the only binary operations that could possibly be capable of expressing all other operations.

- To express negation, the value of the operation for $P=\mathrm{T}$ and $Q=\mathrm{T}$ must be F .

P	Q	P operation Q
T	T	F
T	F	
F	T	
F	F	

- To express biconditional, the value of the operation for $P=\mathrm{F}$ and $Q=\mathrm{F}$ must be T .

P	Q	P operation Q
T	T	F
T	F	
F	T	
F	F	T

- If the values of the operation at $P=\mathrm{T}, Q=\mathrm{F}$ and at $P=\mathrm{F}, Q=\mathrm{T}$ are T and F respectively, then the operation is equivalent to $\neg Q$, while if the values of the operation at $P=\mathrm{T}, Q=\mathrm{F}$ and at $P=\mathrm{F}$, $Q=\mathrm{T}$ are F and T respectively, then the operation is equivalent to $\neg P$. We already know that \neg cannot express other operations.
- Thus these two values should be either both T or both F. In the first case we get $P \star Q$, and in the second we get $P * Q$:

P	Q	$P \star Q$
T	T	F
T	F	T
F	T	T
F	F	T

P	Q	$P * Q$
T	T	F
T	F	F
F	T	F
F	F	T

Next we will show that all other operations can be expressed in terms of \star.
Observe that $X \star X \equiv \neg(X \wedge X) \equiv \neg X$, so

$$
\neg X \equiv X \star X
$$

Then,

$$
\begin{aligned}
X \wedge Y & \equiv \neg(X \star Y) \\
& \equiv(X \star Y) \star(X \star Y)
\end{aligned}
$$

$$
\begin{aligned}
X \vee Y & \equiv \neg((\neg X) \wedge(\neg Y)) \\
& \equiv \neg((X \star X) \wedge(Y \star Y)) \\
& \equiv \neg(((X \star X) \star(Y \star Y)) \star((X \star X) \star(Y \star Y))) \\
& \equiv(((X \star X) \star(Y \star Y)) \star((X \star X) \star(Y \star Y))) \star \\
& (((X \star X) \star(Y \star Y)) \star((X \star X) \star(Y \star Y))) .
\end{aligned}
$$

Notice that

$$
(A \star A) \star(A \star A) \equiv \neg \neg A \equiv A,
$$

so the above can be simplified:

$$
X \vee Y \equiv(X \star X) \star(Y \star Y)
$$

Equivalently, using $X \wedge Y \equiv \neg(X \star Y)$, we could do the following:

$$
\begin{aligned}
X \vee Y & \equiv \neg((\neg X) \wedge(\neg Y)) \\
& \equiv \neg(\neg((\neg X) \star(\neg Y))) \\
& \equiv(\neg X) \star(\neg Y) \\
& \equiv(X \star X) \star(Y \star Y) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
X \rightarrow Y & \equiv \neg X \vee Y \\
& \equiv \neg(X \wedge \neg Y) \\
& \equiv \neg(X \wedge(Y \star Y)) \\
& \equiv \neg((X \star(Y \star Y)) \star(X \star(Y \star Y))) \\
& \equiv((X \star(Y \star Y)) \star(X \star(Y \star Y))) \star((X \star(Y \star Y)) \star(X \star(Y \star Y))) \\
& \equiv X \star(Y \star Y) .
\end{aligned}
$$

Exercise: express \neg, \wedge, and \vee in terms of $*$.

