Expressing some operations in terms of others revisited.

Recall the following from a previous lecture.

From the six operations \neg , \land , \lor , \oplus , \rightarrow , \leftrightarrow , some operations can be expressed in terms of others. For example,

 $P \to Q \equiv \neg P \lor Q.$

Also, it can be checked using the truth tables that

 $P \wedge Q \equiv \neg (\neg P \vee \neg Q),$ $P \vee Q \equiv \neg (\neg P \wedge \neg Q),$ $P \oplus Q \equiv (P \wedge \neg Q) \vee (\neg P \wedge Q),$ $P \leftrightarrow Q \equiv (P \wedge Q) \vee (\neg P \wedge \neg Q).$

Observations made earlier:

- 1. Any operation can be defined in terms of \land , \lor , and \neg .
- 2. Since \wedge can be defined in terms of \vee and \neg , any operation can be defined in terms of these two.
- 3. Since \lor can be defined in terms of \land and \neg , any operation can be defined in terms of these two as well.

Old questions and new answers:

1. Can \neg be defined in terms of \land and \lor ?

Answer: no. If this were possible, we would have an expression that contains only variables, \wedge , and \vee , and is logically equivalent to $\neg P$. However, when constructing a truth table for such an expression, we would only have the value T in the first line, where each variable has the value T. So, it is not possible to get an F in that line, therefore the expression cannot be logically equivalent to $\neg P$.

2. Can \wedge and \vee be defined in terms of \rightarrow and \neg ? If so, how? If not, explain why not.

Answer: yes. Since $P \to Q \equiv \neg P \lor Q$, replacing P with $\neg P$ and

eliminating the double negation, we have:

$$P \lor Q \equiv \neg P \to Q.$$

Applying negation to both sides of this gives

$$\neg (P \lor Q) \equiv \neg (\neg P \to Q).$$

Using DeMorgan's law,

$$\neg P \land \neg Q \equiv \neg (\neg P \to Q).$$

Finally, replace P with $\neg P$ and Q with $\neg Q$, and eliminate the double negation to obtain:

$$P \land Q \equiv \neg (P \to \neg Q).$$

3. Can all of these six operations be expressed in terms of just one of them? If so, which one? If not, explain why not.

Answer: no.

- \neg is insufficient because it cannot connect two variables.
- $\wedge, \vee, \rightarrow$, and \leftrightarrow always will give the truth value T when each variable has the value T, therefore cannot express negation.
- \oplus will always give the value F when each variable has the value F, therefore cannot express \leftrightarrow .
- 4. Does there exist any other operation (an operation can be defined by a truth table) that could be used to define all six of the above (classical) operations?

Answer: yes. There are two such operations, namely,

$$X \star Y = \neg (X \wedge Y)$$

and

$$X * Y = \neg (X \lor Y).$$

First let's show that these operations \star and \ast are the only binary operations that could possibly be capable of expressing all other operations.

• To express negation, the value of the operation for P = T and Q = T must be F.

P	Q	P operation Q
Т	Т	F
Т	F	
F	Т	
F	F	

• To express biconditional, the value of the operation for P = F and Q = F must be T.

P	Q	P operation Q
Т	Т	F
Т	F	
F	Т	
F	F	Т

- If the values of the operation at P =T, Q =F and at P =F, Q =T are T and F respectively, then the operation is equivalent to ¬Q, while if the values of the operation at P =T, Q =F and at P =F, Q =T are F and T respectively, then the operation is equivalent to ¬P. We already know that ¬ cannot express other operations.
- Thus these two values should be either both T or both F. In the first case we get $P \star Q$, and in the second we get $P \star Q$:

P	Q	$P \star Q$	P	Q	P * Q
Т	Т	F	Т	Т	F
Т	F	Т	Т	F	F
F	Т	Т	F	Т	\mathbf{F}
F	F	Т	F	F	Т

Next we will show that all other operations can be expressed in terms of \star .

Observe that $X \star X \equiv \neg (X \land X) \equiv \neg X$, so

$$\neg X \equiv X \star X.$$

Then,

$$X \wedge Y \equiv \neg (X \star Y)$$
$$\equiv (X \star Y) \star (X \star Y),$$

$$\begin{aligned} X \lor Y &\equiv \neg ((\neg X) \land (\neg Y)) \\ &\equiv \neg ((X \star X) \land (Y \star Y)) \\ &\equiv \neg (((X \star X) \star (Y \star Y)) \star ((X \star X) \star (Y \star Y))) \\ &\equiv (((X \star X) \star (Y \star Y)) \star ((X \star X) \star (Y \star Y))) \star \\ &(((X \star X) \star (Y \star Y)) \star ((X \star X) \star (Y \star Y))). \end{aligned}$$

Notice that

$$(A \star A) \star (A \star A) \equiv \neg \neg A \equiv A,$$

so the above can be simplified:

$$X \lor Y \equiv (X \star X) \star (Y \star Y).$$

Equivalently, using $X \wedge Y \equiv \neg(X \star Y)$, we could do the following:

$$X \lor Y \equiv \neg((\neg X) \land (\neg Y))$$
$$\equiv \neg(\neg((\neg X) \star (\neg Y)))$$
$$\equiv (\neg X) \star (\neg Y)$$
$$\equiv (X \star X) \star (Y \star Y).$$

Also,

$$\begin{aligned} X \to Y &\equiv \neg X \lor Y \\ &\equiv \neg (X \land \neg Y) \\ &\equiv \neg (X \land (Y \star Y)) \\ &\equiv \neg ((X \star (Y \star Y)) \star (X \star (Y \star Y))) \\ &\equiv ((X \star (Y \star Y)) \star (X \star (Y \star Y))) \star ((X \star (Y \star Y)) \star (X \star (Y \star Y))) \\ &\equiv X \star (Y \star Y). \end{aligned}$$

Exercise: express \neg , \land , and \lor in terms of *.