
MATH 110 Lecture notes – 15

Interpretations of modal logics.

Definition. An interpretation of a modal logic in a topological space (X, τ) is a
function

f : {Formulas} → {Subsets of X}

that satisfies:

f(¬F1) = f(F1),

f(F1 ∨ F2) = f(F1) ∪ f(F2),

f(F1 ∧ F2) = f(F1) ∩ f(F2),

f(�F1) = int(f(F1)).

Example. Let X = R, with the usual topology, and suppose f is an interpretation
such that f(P ) = (0, 1) and f(Q) = [1, 2). Then

f((¬(�Q)) ∧ P ) = f(¬(�Q)) ∩ f(P )

= f(�Q) ∩ f(P )

= int(f(Q)) ∩ f(P )

= (1, 2) ∩ (0, 1)

= ((−∞, 1] ∪ [2,∞)) ∩ (0, 1)

= (0, 1).

Remark. f(♦P ) = f(¬�¬P ) = int(f(P )) = cl(f(P )), the closure of f(P ).

Definition. A formula F1 is called valid in a topological space (X, τ) if for any
interpretation f in (X, τ), we have f(F1) = X.

Definition. We say that a formula F1 is valid over all topological spaces if it is valid
in any topological space (X, τ).

Lemma. If X is a set and A and B are subsets of X, then A ⊆ B if and only if
A ∪B = X.

Lemma. An implication F1 → F2 (where F1 and F2 are some expressions) is valid
in a topological space if for any interpretation f , we have f(F1) ⊆ f(F2).
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Theorem. Axioms K, T, and 4 are valid in all topological spaces.

Proof. Axiom T is valid because for any subset A ⊆ X, we have int(A) ⊆ A, thus

f(�P ) = int(f(P )) ⊆ f(P ).

Axiom 4 is valid because for any subset A ⊆ X, we have int(A) = int(int(A)), thus

f(�P ) = int(f(P )) = int(int(f(P )) = f(��P ).

Axiom K is a bit harder to prove, and the proof is omitted in this class.

Theorem.

1. If both F1 and F1 → F2 are valid in a topological space, then F2 is valied also.

2. If F1 is valid in a topological space, then �F1 is valid also.

Corollary. Any formula that is derivable in S4 (i.e. is derivable from the axioms of
the classical logic, K, T, and 4 using the Modus Ponens and Necessitation rules), is
valid over all topological spaces.

Theorem. (much harder to prove, so not proved in this class) Any formula that is
valid over all topological spaces is derivable in S4.

Remark. We say that S4 is sound and complete over all topological spaces.

Corollary. Axiom D is valid over all topological spaces, since it is derivable in S4.

Remark. Axioms B and 5 are not derivable in S4, so they are not valid over all
topological spaces. Each of them is valid in some topological spaces though.

Example. Consider any nonempty set X with discrete topology (i.e. every subset
of X is open, and therefore every subset is also closed). Then f(�P ) = int(f(P )) =
f(P ) and f(♦P ) = cl(f(P )) = f(P ). Therefore, f(�♦P ) = f(P ) also. It follows
that both axioms B and 5 are valid, since f(P ) ⊆ f(�♦P ) and f(♦P ) ⊆ f(�♦P ).

Remark. Suppose that some formula of the form F1 → F2 is derivable in S4. Then
we have:

(1) �(F1 → F2) (necessitation Rule)

(2) �(F1 → F2) → (�F1 → �F2) (axiom K)

(3) �F1 → �F2 (steps (1), (2), and Modus Ponens)

Getting from F1 → F2 to �F1 → �F2 is referred to as “applying the box.”
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Interior/complement problem.

Recall that for our interior/complement problem, we wanted to prove that

int

(

int
(

int(int(A))
)

)

= int
(

int(A)
)

.

Instead, we will prove that in S4,

�¬�¬�¬�P ≡ �¬�P.

Make the following substitution: R = ¬P (so, P = ¬R), then the above becomes

�¬�¬�¬�¬R ≡ �¬�¬R.

Since ¬�¬ is the same as ♦, we can write this equality as

�♦�♦R ≡ �♦R.

To show logical equivalence , we will prove �♦�♦R → �♦R and �♦R → �♦�♦R.

Proof of �♦R → �♦�♦R.

(1) �P → P (axiom T)

(2) �¬Q → ¬Q (step (1) and substitution P = ¬Q)

(3) ¬¬Q → ¬�¬Q (contrapositive of (2))

(4) Q → ♦Q (simplify (3))

(5) �S → ♦�S (step (4) and substitution Q = �S)

(6) ��S → �♦�S (apply box to (5))

(7) �S → ��S (axiom 4)

(8) �S → �♦�S (steps (6) and (7))

(9) �♦R → �♦�♦R (step (8) and substitution S = ♦R)

Proof of �♦�♦R → �♦R is similar and is left as an exercise.
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