Topological Spaces.

Def. Let X be a non-empty set. Then $\tau \subseteq \mathcal{P}(x)$ is a topology on X if it satisfies:
(1) $\emptyset \in \tau$,
(2) $X \in \tau$,
(3) If $A, B \in \tau$, then $A \cap B \in \tau$,
(4) If $A_{i} \in \tau$ for each $i \in I$, then $\cup A_{i} \in \tau$.

Remarks. (3) implies that the intersection of any finite number of elements of τ is also in τ, for example, if $A, B, C \in \tau$, then $A \cap B \in \tau$, and then $(A \cap B) \cap C \in \tau$, i.e. $A \cap B \cap C \in \tau$.
(4) means that in particular, the union of any finite number of elements of τ is in τ, for example, if $A, B, C \in \tau$, then $A \cup B \in \tau$ and $A \cup B \cup C \in \tau$.

Def. Elements of τ are called open sets. The pair (X, τ) is called a topological space.
Examples.

1. $X=\{a\}, \mathcal{P}(X)=\{\emptyset, X\}$. There is only one topology on X :
$\tau=\{\emptyset, X\}=\mathcal{P}(X)$.

2. $X=\{a, b\}, \mathcal{P}(X)=\{\emptyset,\{a\},\{b\}, X\}$. There are four different topologies on X. Topology $\tau_{1}=\{\emptyset, X\}$.

Topology $\tau_{2}=\{\emptyset,\{a\},\{b\}, X\}=\mathcal{P}(X)$.

Topology $\tau_{3}=\{\emptyset,\{a\}, X\}$.

This space is called the Sierpinski space.
Topology $\tau_{4}=\{\emptyset,\{b\}, X\}$.

3. For any non-empty set X, consider $\tau=\{\emptyset, X\}$. Then τ is a topology, it is called the trivial (aka indiscrete) topology.
4. For any non-empty set X, consider $\tau=\mathcal{P}(X)$. Then τ is a topology, it is called the discrete topology.
5. $X=\mathbb{N}, \tau=\{\emptyset,\{1\},\{1,2\},\{1,2,3\}, \ldots, \mathbb{N}\}$. Then τ is a topology. Notice that in this example, for any $A, B \in \tau$, either $A \subseteq B$ or $B \subseteq A$. If $A \subseteq B$, then $A \cap B=A$ and $A \cup B=B$. If $B \subseteq A$, then $A \cap B=B$ and $A \cup B=A$.

6. $X=\{1,2,3,4,5\}$. (Remark: can do this for any finite $|X|$.) Consider $\tau=$ $\{\emptyset,\{1\},\{1,2\},\{1,2,3\},\{1,2,3,4\}, X\}$.

7. $X=\mathbb{R}$, the set of real numbers. The "usual" topology τ on \mathbb{R} is defined as follows. A subset A of \mathbb{R} is in τ if for every $x \in A$, there exists an open interval (a, b) containing x such that $(a, b) \subseteq A$.
For example, $A=(0,1) \in \tau$, because for any point $x \in(0,1)$, consider $(a, b)=$ $(0,1)$. We have $x \in(0,1) \subseteq A$.
However, $A=[0,1] \notin \tau$. For example, consider $x=0$. There is no such open interval (a, b) that $0 \in(a, b)$ and $(a, b) \subseteq A$.
8. Let X be any non-empty set, and $p \in X$. Define τ as follows. A subset A of X is open if it is either empty or contains the point p. The point p is called the particular point, and this topology is called a particular point topology.
9. Let X be any non-empty set, and $e \in X$. Define τ as follows. A subset A of X is open if it is either equal to X or does not contain the point e. The point e is called the excluded point, and this topology is called an excluded point topology.

Remark. The Sierpinski space (topology τ_{3} in example 2) is both a particular point topological space (with $p=a$) and an excluded point topological space (with $e=b$).

Def. If (X, τ) is a topological space and $A \subseteq X$, then A is called closed if $X-A$ is open.

Example. In \mathbb{R} with the usual topology, closed intervals such as $[0,1]$ are closed. Also, sets that are unions of closed intervals, e.g. $(-\infty, 0] \cup[1,2] \cup[3,4]$, are closed.

Properties. The union of any two closed sets is closed. The intersection of any number of closed sets is closed.

Def. If (X, τ) is a topological space and $A \subseteq X$. The interior of $A, \operatorname{int}(A)$, is the largest open set contained in A. It is also the union of all open sets contained in A. The closure of $A, \operatorname{cl}(A)$, is the smallest closed set containing A. It is also the intersection of all closed sets containing A.

Examples.

1. $X=\{a, b, c\}, \tau$ is particular point topology with $p=a$.

The closed sets are: $X,\{b, c\},\{c\},\{b\}, \emptyset$.
Then $c l(\{b, c\})=\{b, c\}, c l(\{a, c\})=X$.
2. \mathbb{R}, with the usual topology. Then $\operatorname{cl}([0,1])=[0,1], \operatorname{cl}((0,1))=[0,1]$, $c l((-\infty,-3] \cup(2,5] \cup[7, \infty))=(-\infty,-3] \cup[2,5] \cup[7, \infty)$.

Properties. For any topological space (X, τ) and any subsets $A, B \subseteq X$, we have

- $\operatorname{int}(\emptyset)=\emptyset$
- $\operatorname{cl}(\emptyset)=\emptyset$
- $\operatorname{int}(X)=X$
- $\operatorname{cl}(X)=X$
- $\operatorname{int}(A) \subseteq A$
- $A \subseteq \operatorname{cl}(A)$
- $\operatorname{int}(A) \subseteq \operatorname{cl}(A)$
- $\operatorname{int}(\operatorname{int}(A))=\operatorname{int}(A)$. Also, if B is open, then $\operatorname{int}(B)=B$.
- $\operatorname{cl}(\operatorname{cl}(A))=\operatorname{cl}(A)$. Also, if B is closed, then $\operatorname{cl}(B)=B$.
- $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$ because

1. $\operatorname{int}(A) \cap \operatorname{int}(B)$ is open
2. $\operatorname{int}(A) \cap \operatorname{int}(B) \subseteq A \cap B$
3. Suppose C is open and $C \subseteq A \cap B$, then $C \subseteq A, C \subseteq B$, Therefore $C \subseteq \operatorname{int}(A), C \subseteq \operatorname{int}(B)$, thus $C \subseteq \operatorname{int}(A) \cap \operatorname{int}(B)$.

- $\operatorname{int}(A) \cup \operatorname{int}(B) \subseteq \operatorname{int}(A \cup B)$.

Here is an example when the above are not equal. Consider \mathbb{R} with the usual topology, $A=(0,1), B=(-\infty, 0] \cup[1, \infty)$.
Then $\operatorname{int}(A) \cup \operatorname{int}(B)=(0,1) \cup(-\infty, 0) \cup(1, \infty)=(-\infty, 0) \cup(0,1) \cup(1, \infty)$ and $\operatorname{int}(A \cup B)=\operatorname{int}(\mathbb{R})=\mathbb{R}$.

- $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$
- $\operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B)$. Exercise: give an example of $A, B \in \mathbb{R}$ such that the above sets are not equal.

