Explanations are not requested for this homework, stating your answers clearly will be sufficient.

1. (20%) Determine which of the following pairs (X, τ) are topological spaces. For those that are not, identify all axioms (out of the four axioms in the definition of a topological space) that do not hold.
(a) $X=\{1,2,3\}, \quad \tau=\{\emptyset\}$
(b) $X=\{1,2,3\}, \tau=\{\{1\},\{1,2\},\{1,2,3\}\}$
(c) $X=\{1,2,3\}, \tau=\{\emptyset,\{1\},\{2\},\{1,2,3\}\}$
(d) $X=\{1,2,3\}, \quad \tau=\{\emptyset,\{2\},\{1,2,3\}\}$
(e) $X=\{1,2,3\}, \quad \tau=\{\emptyset,\{1,2\},\{1,3\},\{1,2,3\}\}$
2. (80%) Consider the set \mathbb{R} with the usual topology. For each subset of \mathbb{R} given below,

- determine whether it is open, closed, both, or neither; and
- find its interior and closure.
(a) \emptyset
(b) \mathbb{R}
(c) $\{0\}$
(d) $\mathbb{R}-\{0\}$
(e) \mathbb{Z} (the set of all integer numbers)
(f) \mathbb{Q} (the set of all rational numbers)
(g) $(2,3) \cup(4, \infty)$
(h) $[2,3) \cup(3,4]$
(i) $(2,3) \cup\{4\}$
(j) $[2,3] \cup\{4\}$

