Explanations are not requested for this homework, stating your answers clearly will be sufficient.

- 1. (20%) Determine which of the following pairs (X, τ) are topological spaces. For those that are not, identify all axioms (out of the four axioms in the definition of a topological space) that do not hold.
 - (a) $X = \{1, 2, 3\}, \ \tau = \{\emptyset\}$
 - (b) $X = \{1, 2, 3\}, \ \tau = \{\{1\}, \{1, 2\}, \{1, 2, 3\}\}$
 - (c) $X = \{1, 2, 3\}, \ \tau = \{\emptyset, \{1\}, \{2\}, \{1, 2, 3\}\}$
 - (d) $X = \{1, 2, 3\}, \ \tau = \{\emptyset, \{2\}, \{1, 2, 3\}\}$
 - (e) $X = \{1, 2, 3\}, \ \tau = \{\emptyset, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$
- 2. (80%) Consider the set $\mathbb R$ with the usual topology. For each subset of $\mathbb R$ given below,
 - determine whether it is open, closed, both, or neither; and
 - find its interior and closure.
 - (a) ∅
 - (b) **R**
 - (c) $\{0\}$
 - (d) $\mathbb{R} \{0\}$
 - (e) \mathbb{Z} (the set of all integer numbers)
 - (f) \mathbb{Q} (the set of all rational numbers)
 - (g) $(2,3) \cup (4,\infty)$
 - (h) $[2,3) \cup (3,4]$
 - (i) $(2,3) \cup \{4\}$
 - (j) $[2,3] \cup \{4\}$