Hoover High School Math League

Bases other than 10

Problems

Integers

- 1. Convert 346_{seven} to a base 10 value.
 - (a) 181
 - (b) 346
 - (c) 567
 - (d) none of the above
- 2. Convert 128_{16} to a base 10 number.
 - (a) 4736
 - (b) 200
 - (c) 256
 - (d) 296
- 3. Convert 432 (base 10) to a base 5 value.
 - (a) 3212_{five}
 - (b) 2312_{five}
 - (c) 432_{five}
 - (d) none of the above
- 4. Convert 384 (base 10) to a hexadecimal (base 16) number.
 - (a) 100₁₆
 - (b) 120₁₆
 - (c) 140₁₆
 - (d) 180₁₆
- 5. Which of the following represents the number 34 (base 10) as a base-6 number?
 - (a) 100₆
 - (b) 54₆
 - (c) 34₆
 - (d) None of the above
- 6. $43_{nine} =$
 - (a) 123_{*five*}
 - (b) 125_{*five*}
 - (c) 234*five*
 - (d) 124_{five}

- 7. The binary system uses base-2 numbers (i.e., the only allowable digits are 0 and 1). Which of the following base 2 numbers is divisible by 2?
 - (a) 111
 - (b) 110
 - (c) 101
 - (d) 011
 - (e) All of the above are divisible by 2.
- 8. In the binary number system, what is 101 plus 110?
 - (a) 211
 - (b) 111
 - (c) 1111
 - (d) 1011
 - (e) None of the above
- 9. In the hexadecimal number system, what is 1A + 2E?
 - (a) 26
 - (b) 38
 - (c) 48
 - (d) 72
- 10. Find the numbers A, B, C, and D in the following base 6 addition.
 - 3 A B 3+ 2 5 CD 0 0 2(a) A = 1, B = 2, C = 3, D = 4(b) A = 3, B = 0, C = 5, D = 3
 - (c) A = 3, B = 0, C = 5, D = 4
 - (d) none of the above
- 11. 43_{Ten} = ______Negative Ten
 - (a) 136
 - (b) 163
 - (c) 631
 - (d) none of the above
- 12. If the number 86 in base ten is represented as 321 in base *b*, then the number 123 in base *b* can be represented in base ten by what number?
 - (a) 12
 - (b) 25
 - (c) 35
 - (d) 38

- 13. Assume that *b* and *c* are two integers that are greater than one. In base *b*, c^2 is written as 10. Then b^2 , when written in base *c* is
 - (a) 100
 - (b) 101
 - (c) 10000
 - (d) 1010
 - (e) It cannot be determined

Decimals

- 14. The number 0.125 (base 10) is represented by which of the following base 2 fractions?
 - (a) 0.001₂
 - (b) 0.01₂
 - (c) 0.1_2
 - (d) None of the above
- 15. Suppose *b* is a positive integer base that satisfies the equation $(.111...)_7 = (.222...)_b$ (where the subscript indicates the base in the representation). Then b =
 - (a) 14
 - (b) 13
 - (c) 6
 - (d) 8
 - (e) None of these

16. The base-2 number (repeated decimal) $.\overline{01}_2 = .010101..._2$ is equal to

- (a) $\frac{1}{3}$
- (b) $\frac{1}{4}$
- (c) $\frac{1}{5}$
- (d) $\frac{1}{6}$
- (e) None of the above

17. When converted to base 10, the infinite repeating base 3 number $0.\overline{12}_3$ is equal to

- (a) $\frac{1}{2}$
- (b) $\frac{4}{9}$
- (c) $\frac{5}{8}$
- (d) $\frac{5}{9}$
- (e) None of the above

- 18. Let $(0.xyxyxy...)_b$ and $(0.yxyxyx...)_b$ be the base *b* representations of the two numbers *A* and *B* respectively, where *x* and *y* represent base *b* digits, not both of which are zero. Then $\frac{A}{B} =$
 - (a) $\frac{y+b}{x+b}$
 - (b) $\frac{x+b}{y+b}$

 - (c) $\frac{xb+y}{yb+x}$
 - (d) $\frac{yb+x}{xb+y}$
 - (e) None of the above